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Abstract 

Background Chest X‑ray imaging based abnormality localization, essential in diagnosing various diseases, faces 
significant clinical challenges due to complex interpretations and the growing workload of radiologists. While recent 
advances in deep learning offer promising solutions, there is still a critical issue of domain inconsistency in cross‑
domain transfer learning, which hampers the efficiency and accuracy of diagnostic processes. 

This study aims to address the domain inconsistency problem and improve autonomic abnormality localization 
performance of heterogeneous chest X‑ray image analysis, particularly in detecting abnormalities, by developing 
a self‑supervised learning strategy called “BarlwoTwins‑CXR”.

Methods We utilized two publicly available datasets: the NIH Chest X‑ray Dataset and the VinDr‑CXR. The Bar‑
lowTwins‑CXR approach was conducted in a two‑stage training process. Initially, self‑supervised pre‑training 
was performed using an adjusted Barlow Twins algorithm on the NIH dataset with a Resnet50 backbone pre‑trained 
on ImageNet. This was followed by supervised fine‑tuning on the VinDr‑CXR dataset using Faster R‑CNN with Fea‑
ture Pyramid Network (FPN). The study employed mean Average Precision (mAP) at an Intersection over Union (IoU) 
of 50% and Area Under the Curve (AUC) for performance evaluation.

Results Our experiments showed a significant improvement in model performance with BarlowTwins‑CXR. The 
approach achieved a 3% increase in mAP50 accuracy compared to traditional ImageNet pre‑trained models. In addi‑
tion, the Ablation CAM method revealed enhanced precision in localizing chest abnormalities. The study involved 
112,120 images from the NIH dataset and 18,000 images from the VinDr‑CXR dataset, indicating robust training 
and testing samples.

Conclusion BarlowTwins‑CXR significantly enhances the efficiency and accuracy of chest X‑ray image‑based abnor‑
mality localization, outperforming traditional transfer learning methods and effectively overcoming domain inconsist‑
ency in cross‑domain scenarios. Our experiment results demonstrate the potential of using self‑supervised learning 
to improve the generalizability of models in medical settings with limited amounts of heterogeneous data. This 
approach can be instrumental in aiding radiologists, particularly in high‑workload environments, offering a promising 
direction for future AI‑driven healthcare solutions.
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Introduction
Chest X-ray(CXR) is a fundamental and widespread 
medical diagnostic tool for diagnosing chest diseases. 
It is efficient and cost-effective, suitable for preliminary 
screening and diagnosis [1]. During the 2019 coronavi-
rus pandemic, CXR was widely used for triaging patients 
and prioritizing the care order due to its convenience and 
flexibility. Effective mitigation addresses the lack of avail-
ability of computed tomography and reduces the risk of 
transmission in the room with the CT scanner [2]. How-
ever, its complex interpretation often requires a highly 
qualified radiologist to make an accurate diagnosis [1]. 
As the demand for healthcare increases, the workload of 
radiologists has significantly increased [3]. It results in 
less time to analyze each radiographic image, potentially 
increasing the risk of diagnostic error. In many areas, 
especially in developing and remote areas, qualified 
radiologists are insufficient to cope with the increased 
demand for healthcare. For instance, Europe has 13 radi-
ologists per 100,000 people, while the United Kingdom 
has 8.5, and Malaysia has approximately 30 per million 
population [4]. This situation necessitates urgently devel-
oping and introducing automated technologies like AI-
based image analysis tools to aid radiologists in quicker 
and more precise CXR image analysis. It will improve 
the quality of diagnosis and help reduce the workload of 
doctors.

In recent years, deep learning models have rapidly 
advanced in various medical image analysis fields of CXR, 
demonstrating diagnostic accuracy comparable to human 
experts [5]. Object detection plays a more critical role in 
medical image analysis because it can identify and pre-
cisely locate the types of anomalies in the images, provid-
ing doctors with more specific and valuable information. 
However, training these models requires a large amount 
of annotated data. These annotations must be performed 
by experienced radiologists for CXR images, as well as for 
most medical images, making such annotated data not 
only costly, but also rare, with only a very limited num-
ber of public datasets including bounding box informa-
tion. Although transfer learning is widely regarded as an 
effective method to solve the problem of scarce labelling 
data, its application in medical image analysis still faces 
limitations. This is mainly due to the significant differ-
ence in feature distribution between large datasets(such 
as ImageNet) used for pre-training models and medical 
imaging datasets. This cross-domain transfer learning 
disparity that directly applying these pre-trained weights 
to medical image analysis might not yield the best out-
comes, particularly for specialized medical diagnostic 
applications [6, 7].

In order to develop an efficient chest x-ray image analy-
sis method while addressing the problem of data scarcity 

and domain inconsistency in transfer learning, our study 
proposed the BarlowTwins-CXR method, and its main 
contributions are as follows: 

1. Proposed a new self-supervised two-phase train-
ing strategy to diagnose and locate abnormalities in 
CXR. Bringing self-supervised learning into chest 
X-ray anomaly localization solves the problem of 
cross-domain transfer learning differences.

2. In the first learning phase, our approach leverages 
self-supervised pre-training with the Barlow Twins 
algorithm [8], applied to CXR images without anno-
tation. This strategy addresses the challenge of data 
heterogeneity between pre-trained ImageNet [9] 
models and CXR images. In the second phase, trans-
fer learning on the VinDr-CXR [10] dataset is applied 
to fine-tune the model.

3. In the experiment employing ResNet50 [11] as the 
backbone architecture, we observed that implement-
ing the BarlowTwins-CXR strategy significantly 
improved model performance. We observed a 3% 
increase in model accuracy on the mean Average 
Precision benchmark, surpassing the results achieved 
by directly performing transfer learning from Ima-
geNet pre-trained weights.

4. Our experiment results demonstrate the potential of 
self-supervised learning in medical image analysis, 
especially in the absence of annotated data, paving 
the way for more efficient and accurate diagnostic 
aids methods in the future.

The paper is organized as follows: First, the related 
work section presents an overview of the research related 
to deep learning, self-supervised learning and transfer 
learning in the field of medical images. The methods sec-
tion describes the dual-phase training process with data-
set setup and preprocessing. The results section shows 
and compares the results obtained with different image 
sizes and backbone weights. We also used Heatmap visu-
alization and Linear Evaluation Protocol to highlight the 
scheme’s effectiveness in this section. Finally, the conclu-
sions of this study and suggestions for future research are 
discussed in the discussion section.

Related work
In recent years, deep learning techniques have excelled 
in the field of medical imaging, particularly in analyzing 
CXR images. For example, in terms of disease classifica-
tion, ChexNet proposed by Pranav Rajpurkar et  al. [12] 
outperformed radiologists in detecting chest diseases, 
when benchmarked against the F1 score. Neural net-
work models trained with vast amounts of labelled data 
are capable of identifying features of various pulmonary 



Page 3 of 12Sheng et al. BMC Medical Informatics and Decision Making          (2024) 24:126  

diseases. In anomaly detection tasks, Sun K X et  al. 
used the YOLOv7 object detection framework to effec-
tively identify and locate lesions in CXR images [13]. 
This achievement is attributed to the advanced image 
recognition and feature extraction capabilities of neural 
networks. Additionally, the modified U-net architecture 
which incorporates attention mechanisms, as proposed 
by Gusztáv Gaál et  al. [14], has made significant strides 
in accurately segmenting lung structures, thus aiding in 
detailed analysis and diagnosis of diseases.

Self-supervised learning has recently gained popular-
ity in the field of medical imaging [15] and provides an 
efficient method for utilizing unlabeled data. Initially 
proposed by Bengio et al., this approach allows models to 
learn from unlabeled data and extract useful feature rep-
resentations by training deep networks on unsupervised 
data [16]. Such learning strategy promotes models to cap-
ture the intrinsic structure and relationships in data by 
designing innovative pretext tasks, such as image recon-
struction (e.g., Context encoder [17]), contrastive learn-
ing (e.g., SimCLR [18]), or prediction tasks (e.g., rotation 
prediction [19]). In the field of medical imaging, Shek-
oofeh Azizi et al. used large-scale images for self-super-
vised learning to improve accuracy and convergence 
speed significantly in downstream tasks, achieving better 
performance than models pre-trained on ImageNet [20]. 
Sowrirajan H et al. proposed a pre-trained model based 
on Momentum Contrast to enhance the representative-
ness and portability of CXR models [21].

In terms of transfer learning, applying models trained 
in one domain to another has led to notable success in 
medical image analysis. Research indicates that well-
processed transfer results from ImageNet can improve 

model performance in the medical imaging domain 
[6]. However, studies by Christos Matsoukas et  al. have 
shown that due to the significant difference in feature dis-
tribution between medical and natural images, features 
learned from natural images may not always be broadly 
applicable to medical images [22]. Various cross-domain 
adaptive transfer learning methods have been developed 
to address these challenges, such as unsupervised and 
semi-supervised learning and sequential domain adap-
tation techniques. By tuning model parameters, these 
methods can be better adapted to the characteristics of 
medical images, improving the performance and accu-
racy of models in medical image analysis [6].

Methods
Dataset selection
This study utilized two publicly available chest X-ray 
datasets: the NIH-CXR [23] dataset and the VinDr-CXR 
dataset. The NIH dataset comprises 112,120 posterior-
anterior (PA) or anterior-posterior (AP) CXR images 
from 30,805 patients, covering 14 diseases with image-
level annotations, including disease location annotations 
in some images. The distribution of the NIH-CXR data-
set is illustrated in Fig. 1.

Meanwhile, the VinDr-CXR dataset is the largest 
publicly available dataset for adult CXR object detec-
tion, which includes 18,000 PA CXR scans. These scans 
encompass 14 diseases with detailed instance-level 
bounding box annotations, making it ideal for the fine-
tuning phase.

The VinDr-CXR dataset exhibits a distinct labelling 
process for its test and training sets. The training set, con-
sisting of 15,000 images, was annotated independently 

Fig. 1 Image‑level label distribution of the NIH‑CXR dataset
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by three radiologists per image. In contrast, the test set, 
comprising 3,000 images, underwent a more rigorous 
annotation process. Initially, each image was indepen-
dently annotated by three radiologists. This is followed by 
a secondary review phase where these initial annotations 
are reviewed by two other more experienced radiologists, 
they communicated with each other to resolve any disa-
greements and reach a consensus on the final labelling. 
This meticulous process for the test set created a poten-
tial disparity in data distribution compared to the train-
ing set. To eliminate any bias it might introduce in our 
study, we resplit the original training set into new train-
ing, validation, and test sets for our experiments.

To improve the quality of the training data, a Weighted 
Box Fusion (WBF) [24] preprocessing technique was 
applied to the VinDr-CXR training set. The WBF involves 
calculating the weighted average of each set of duplicate 

bounding boxes to create a single fused bounding box. 
Such a preprocessing step is crucial for reducing anno-
tation redundancy and improving target area representa-
tion in the dataset. Figure 2 shows the data distribution 
of VinDr-CXR before and after WBF preprocessing.

We chose the VinDr-CXR dataset not only because it is 
the largest publicly available dataset for adult CXR object 
detection, but also because of the high level of diversity 
and richness of its data.

Dual‑phase training process
Our training encompasses two primary phases: self-
supervised pre-training and subsequent supervised fine-
tuning, as shown in Fig. 3. Initially, we commenced with a 
Resnet50 model pre-trained on ImageNet.

In the self-supervised pre-training phase, we applied 
the Barlow Twins method to the NIH-CXR Dataset 

Fig. 2 Instance‑level annotation distribution of VinDr‑CXR dataset before (a) and after (b) WBF preprocessing
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to exploit its ability to enhance feature independence, 
thereby significantly reducing feature redundancy in 
medical imaging. This approach refined the ImageNet 
pre-trained model by updating its backbone weights.

Subsequently, in the supervised fine-tuning phase, 
we utilize this refined backbone within a Faster R-CNN 
framework, chosen for its efficacy in precise localization 
and classification within complex images, to the VinDr-
CXR dataset. This step aims to improve the model’s task-
specific performance further, explicitly enhancing its 
capabilities in localized anomalies in CXR images.

Self‑supervised pre‑training
We chose the Barlow Twins method for the first stage 
of our training to ensure that visual features in medical 
images remain independent from each other, a crucial 
consideration for improving the performance of medical 
imaging analysis. As outlined by Zbontar et  al. [8], this 
approach represents a shift from conventional contrastive 

learning, introducing a self-supervised learning frame-
work primarily focused on diminishing redundancy. The 
Barlow Twins method operates on a straightforward yet 
potent principle: it learns distinctive features by reducing 
the representational differences between two differently 
distorted images from the same source as processed by 
the network. This strategy is instrumental in enabling the 
model to identify unique and rich features in each image 
while concurrently minimizing the overlap in features. 
The process involves generating two distinct variants of 
an image through data augmentation, followed by their 
simultaneous processing via two deep neural networks 
that share identical weights. The objective is to align the 
network’s weights to enhance the similarity in the high-
level representations of these image pairs yet ensure that 
the individual features remain distinct and independent.

The Barlow Twins method might be particularly use-
ful for medical imaging because it extracts features by 
minimizing the redundancy between representations of 

Fig. 3 Schematic Overview of the Dual‑phase Training Framework. The upper panel illustrates the Barlow Twins method in Phase One, where pairs 
of distorted images are processed through a shared ResNet50 network to produce embeddings. These are then compared using an empirical 
cross‑correlation matrix C, striving for the identity matrix I to minimize redundancy in feature dimensions, and optimizing the loss function LBT  . In 
Phase Two (lower panel), the pre‑trained ResNet50 backbone from Phase One is integrated into a Faster R‑CNN architecture. It starts with multi‑scale 
feature extraction through the Feature Pyramid Network (FPN), followed by the Region Proposal Network (RPN) that generates object region 
proposals. The features are then pooled and processed by fully connected (FC) layers to output the final class labels and bounding box coordinates 
for object detection tasks
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perturbed images. In CXR imaging, subtle differences 
might indicate important health information, and the 
Barlow Twins can effectively capture these subtle but 
clinically important features. In contrast to other con-
trastive learning algorithms like MoCo [25] and SimCLR, 
which construct similarity matrices at the batch dimen-
sion, Barlow Twins works at the feature dimension. It 
aims to assign an independent meaning to each feature 
dimension. This could lead to a richer feature represen-
tation, potentially better adapted to variations in CXR 
images (e.g., different imaging conditions and patho-
logical states). Moreover, compared to self-supervised 
learning methods requiring negative samples or com-
plex contrastive mechanisms like SimCLR, Barlow Twins 
offers a more straightforward training framework, which 
is particularly important in situations with limited com-
putational resources.

We chose to apply Barlow Twins pre-training on the 
ImageNet pretrained ResNet50 model. Since the Ima-
geNet pre-trained model weights can be easily obtained 
from the Torchvision library, this step brings no addi-
tional cost. We used images from the training set por-
tion of the NIH-CXR dataset for this training phase, with 
the input image size set to 224*224 pixels. The training 
was executed on an NVIDIA A100 80G GPU, setting 
the batch size to 768 to maximize the utilization of this 
graphics card’s capabilities over 600 epochs.

Fine‑tuning phase
In our fine-tuning/transfer learning stage, we utilized 
the Faster R-CNN [26] with Feature Pyramid Network 
(FPN) [27] as our object detector and trained it on the 
VinDr-CXR dataset. Faster R-CNN, a widely-used object 
detection framework, comprises two main components: 
the Region Proposal Network (RPN) [27] and the Fast 
R-CNN detector. First, RPN generates candidate regions 
for objects, and then the Fast R-CNN detector employs 
these regions to detect and classify targets. This architec-
ture renders Faster R-CNN particularly efficient in pro-
cessing complex images. The Feature Pyramid Network 
(FPN), an architecture frequently employed in object 
detection, particularly enhances performance with multi-
scale targets. It integrates high-level semantic informa-
tion from deeper layers with detailed information from 
shallower layers, producing feature maps of varied scales 
that effectively detect differently sized targets.

We employed the MMdetection [28] machine learn-
ing toolbox as the platform for Faster R-CNN, utilizing a 
number of classical image augmentation techniques and 
maintaining consistent hyperparameters across all exper-
iments. Two different input sizes, 224*224 pixels and 
640*640 pixels, were chosen to assess the impact of image 
size on the model’s performance with the pre-trained 

models. In addition, for comparison, we also conducted 
experiments using ImageNet pre-trained weights directly.

We implemented a linear evaluation protocol [29, 30] 
on the NIH-CXR dataset to comprehensively evaluate the 
self-supervised learning model’s performance in medi-
cal imaging. This method examines the model’s feature 
transfer capability - its ability to adapt learned represen-
tations to new tasks. We first resplit the test set of the 
NIH dataset into two parts: 80% as an evaluation training 
set for training a linear classifier and the remaining 20% 
as an evaluation test set for assessing model performance.

We adopted two distinct strategies during the evalua-
tion: freezing the backbone weights or fine-tuning the 
weights. In the freezing backbone strategy, we kept the 
parameters of the backbone network (i.e., the feature 
extraction layers) obtained from self-supervised pre-
training unchanged. We updated only the weights of the 
final linear layer. Conversely, under the fine-tuning strat-
egy, we updated parameters across the entire network, 
encompassing both the self-supervised trained feature 
extraction layers and the newly added linear classifier 
layer. We used 100%, 10%, and 1% of the evaluation train-
ing set data for training the linear classifier, allowing us to 
assess the model’s performance across different scales of 
training data.

When evaluating the representation transfer ability of 
a self-supervised learning model, it is necessary to ensure 
that the ratio of individual labels in the training and test 
sets is consistent. We used the Iterative stratification for 
the multi-label data method [31, 32] to ensure that the 
proportions of each label in the evaluation training and 
test sets were roughly similar. This helped prevent biases 
due to uneven label distribution, making our evaluation 
results more reliable and convincing.

Results analysis process
For the analysis of results, we employed the mean Aver-
age Precision (mAP) at an Intersection over Union (IoU) 
of 50% as the benchmark for evaluating the performance 
of our object detection models. mAP is a widely recog-
nized and effective metric in object detection, calculated 
by averaging precision scores across various object detec-
tion confidence thresholds. Specifically, mAP is the mean 
of the average precision scores for each class. The pro-
portion of correct predictions relative to all predictions 
for a specific class across different detection confidence 
thresholds determines the precision score. In the context 
of CXR abnormality localization, utilizing mAP at an IoU 
of 50% is beneficial for capturing clinically significant 
lesion detections while allowing for a reasonable degree 
of positional deviation, which is practical for actual clini-
cal applications.



Page 7 of 12Sheng et al. BMC Medical Informatics and Decision Making          (2024) 24:126  

Moreover, we utilized the Area Under the Curve (AUC) 
as a metric for the linear evaluation protocol. AUC, a 
standard metric in medical image analysis, balances 
precision and recall, making it an especially appropri-
ate performance indicator for this field. The AUC met-
ric represents the area under the Receiver Operating 
Characteristic (ROC) curve, accounting for the model’s 
True Positive Rate (TPR) and False Positive Rate (FPR) 
at various thresholds. This assessment method balances 
the model’s sensitivity and specificity, enhancing detec-
tion rates while controlling false positives. Medical image 
analysis often deals with imbalanced data, and AUC is 
robust for imbalanced datasets as it does not rely directly 
on classification thresholds.

Beyond using mAP and AUC for quantitative analysis, 
our study also utilized the Ablation CAM (Class Activa-
tion Mapping) method to create heat maps for qualitative 
evaluation. Ablation CAM systematically abates features 
in the model’s final convolutional layer and observes the 
impact on the output class scores. This process reveals 

the most influential regions for the model’s decision-
making. The resulting heat maps delineate areas of inter-
est in CXR images, providing intuitive visual evidence of 
how our BarlowTwins-CXR model focuses on and recog-
nizes abnormalities.

Results
Transfer learning on VinDr abnormality localization
In this experiment, we examined the efficacy of the 
ResNet backbone pre-trained by the Barlow Twins-CXR 
method for abnormality localization on the VinDr-CXR 
dataset, using two different input resolutions. Consist-
ent hyperparameter settings were maintained across all 
experiments, ensuring that the performance changes 
were attributable only to the merits of the pretraining 
method itself. We visualized the performance of different 
models such as Barlow twins-CXR pre-training and Ima-
geNet pre-training on the validation set in Fig. 4, and tab-
ulated the corresponding mAP performance in Table  1. 
As depicted in the figure, the baseline model with an 

Fig. 4 Evolution of mAP50 across epochs for different ResNet50 backbones on the VinDr‑CXR dataset at 224*224(left) and 640*640(right) resolution. 
The darker lines represent the average mAP50 of four(left) and five(right) trials with different random seeds, with shaded areas indicating the range 
between the lowest and highest value

Table 1 mAP50 scores in validation and test sets for models with varying pre‑training methods at different input resolutions

Scores are presented with 95% confidence intervals

BackBone_weight Input_size mAP50 (val set) mAP50 (test set)

Baseline No Pre‑training 224 0.1388 (0.1337, 0.1439) 0.1342 (0.1291, 0.1393)

Pre‑trained on ImageNet 0.2245 (0.2187, 0.2303) 0.2210 (0.2187, 0.2233)

Random initialization + Barlow twins 0.2555 (0.2456, 0.2655) 0.2448 (0.2400, 0.2496)

Barlow Twins + ImageNet pretrained 0.2625 (0.2544, 0.2706) 0.2502 (0.2465, 0.2539)

ImageNet pretrained 640 0.2973 (0.2876, 0.3061) 0.2800 (0.2729, 0.2876)

Barlow Twins + ImageNet pretrained 0.3102 (0.3076, 0.3139) 0.2890 (0.2787, 0.2993)
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untrained ResNet50 backbone reached a final mAP50 
score of 0.1342 (95% CI 0.1291, 0.1393), setting a perfor-
mance baseline without pre-training benefits.

A significant advancement was observed with the Ima-
geNet pre-trained ResNet50, which attained a mAP50 of 
0.2210 (95% CI 0.2187, 0.2233), underscoring the value 
of pre-training in feature representation across disparate 
image domains.

More strikingly, incorporating the Barlow Twins-CXR 
strategy on top of a randomly initialized ResNet50 led 
to a rapid performance ascent, achieving a mAP50 of 
0.2448 (95% CI 0.2400, 0.2496). It marked an expedited 
training trajectory and a significant increase in detection 
performance.

When further enhanced by pre-training from Ima-
geNet, the Barlow Twins-CXR approach yielded the best 
performance, recording a mAP of 0.2502 (95% CI 0.2465, 
0.2539), evidencing the synergetic effect of combining 
pre-training methodologies.

The heat maps generated from the study present a 
compelling visualization of the performance of the Bar-
lowTwins-CXR method compared to the traditional Ima-
geNet weights approach. We generated heat maps of the 
first few CXR images of the training and test sets in Fig. 5. 
In each image, our method’s heat maps show a more 
focused alignment with the actual lesion areas marked 
by the Ground Truth Bbox. This indicates a higher pre-
cision in localizing and identifying pathological features 

with BarlowTwins-CXR, potentially offering more tar-
geted information for clinical diagnoses. Notably, in cases 
of cardiomegaly and lung opacity, the concentration and 
localization of the heatmaps from BarlowTwins-CXR are 
visibly superior to those derived from ImageNet weights, 
further affirming the efficacy of our approach in enhanc-
ing CXR image analysis.

Upon escalating the input resolution to 640 * 640 pixels, 
both ImageNet and Barlow Twin-CXR weighted mod-
els saw performance improvements due to the increased 
detail in the CXR images. Nonetheless, the performance 
differential between the two narrowed, indicating that 
the higher resolution somewhat mitigates the distinct 
advantages of self-supervised pre-training.

This points to intriguing future research avenues, such 
as refining image resolution parameters during pre-train-
ing and fine-tuning phases and investigating whether 
higher-resolution pre-training could elevate model per-
formance. It also accentuates the necessity of tailoring 
deep learning model design to specific tasks, considering 
factors like image resolution and feature granularity.

Overall, implementing the Barlow Twins-CXR method 
on the VinDr dataset resulted in substantial gains 
despite its data limitations and the inherent challenges 
of CXR abnormality localization. An 11.5% performance 
enhancement over the baseline and a 2.8% increment 
over ImageNet pre-trained models were observed on 
the mAP50 metric. Such marked improvements confirm 

Fig. 5 Heatmaps were generated from the initial images of the training set(left) and test set(right), indicating successful Bbox predictions 
by the BarlowTwins‑CXR model. Each heatmap corresponds to one accurately predicted bbox, despite multiple bboxes present in each CXR image. 
Serial numbers below the heatmaps refer to the image numbers in the dataset
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the Barlow Twins-CXR strategy’s prowess in addressing 
domain inconsistencies, thereby fine-tuning naturally 
derived image weights for better applicability in CXR 
image analysis and beyond in medical imaging.

Linear evaluation protocol
In this experiment, we evaluated the impact of Barlow 
Twins-CXR pre-training versus traditional ImageNet 
pre-training on the linear classification performance 
within the NIH-CXR dataset. We adhered to the linear 
evaluation protocol, freezing the backbone of the lin-
ear classifier and updating only the final linear layer’s 
weights. This approach was applied across training data-
sets of varying sizes - 1%, 10%, and 100%, results of these 
experiments are presented in Fig. 6 and Table 2.

The results show that at a training data size of 1%, the 
Barlow Twins-CXR pre-trained model demonstrated a 
significant advantage, achieving an AUC of 0.6586 (95% 
CI 0.6544, 0.6628) compared to 0.5932 (95% CI 0.5905, 
0.5959) for the ImageNet pre-trained model. As the 

training data size increased to 10% and 100%, the AUCs 
for the Barlow Twins-CXR pre-trained model reached 
0.7773 (95% CI 0.7749, 0.7797) and 0.8031 (95% CI 
0.8026, 0.8036), respectively, while the ImageNet pre-
trained model scored 0.6855 (95% CI 0.6808, 0.6903) and 
0.7098 (95% CI 0.7085, 0.7111).

Notably, the incremental gains for both pre-training 
methods diminished with larger data sizes, suggesting 
that the performance boost provided by additional data 
becomes marginal when only the linear layer is updated.

These findings highlight the Barlow Twins-CXR pre-
training method’s superiority over ImageNet pre-training 
across various dataset sizes, especially in data-limited 
scenarios. This demonstrates the promise of self-super-
vised learning in enhancing medical image analysis, par-
ticularly when annotated data is scarce.

End‑to‑end finetuning
In our end-to-end experiments, where we permit-
ted updates to all model layers, the Barlow Twins-CXR 

Fig. 6 AUC Scores with Error Bars for NIH‑CXR Classification ‑ This figure displays the AUC scores of linear models with Barlow Twins‑CXR 
versus ImageNet weights across various dataset sizes (1%, 10%, 100%). As indicated by higher AUC scores, models using Barlow Twins‑CXR 
consistently outperform those with ImageNet pre‑training. Error bars represent the range of scores across five experiments

Table 2 AUC scores in validation and test sets for of linear models with varying pre‑training methods at 224 and 640 input resolutions

Scores are presented with 95% confidence intervals

Model 1% 10% 100%

Barlowtwin‑CXR 0.6586 (0.6544, 0.6628) 0.7773 (0.7749, 0.7797) 0.8031 (0.8026, 0.8036)

Image‑Net 0.5932 (0.5905, 0.5959) 0.6855 (0.6808, 0.6903) 0.7098 (0.7085, 0.7111)
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pre-trained ResNet50 backbone consistently outper-
formed the ImageNet pre-trained equivalent across all 
training set sizes. The results of these experiments are 
presented in Fig. 7 and Table 3.

At a 1% training data size, the Barlow Twins-CXR 
model achieved a 4.2% higher AUC than the ImageNet 
counterpart.

With 10% and 100% data sizes, the Barlow Twins-CXR 
model maintained leads of approximately 5.9% and 2.5%, 
respectively. Notably, the magnitude of improvement 
over the frozen backbone setup was less marked, suggest-
ing that the wealth of features learned during self-super-
vised training reduces the margin for additional gains 
during subsequent fine-tuning.

Overall, these end-to-end fine-tuning results suggest 
that comprehensive learning across all model layers may 
elevate the risk of overfitting, particularly when data is 
scarce. The narrowing performance differential between 
the two pre-training strategies with increasing data volume 
indicates that the distinction between domain-specific 

(Barlow Twins-CXR) and generalized (ImageNet) pre-
training becomes less substantial with larger datasets. This 
trend implies that the influence of the pre-training strategy 
on the final performance of models may diminish as the 
size of the medical image dataset grows.

Discussion
Our study demonstrates that the BarlowTwins-CXR 
approach effectively utilizes unannotated CXR images for 
learning valuable representations and enhances transfer 
learning efficiency from ImageNet, thus addressing issues 
of domain inconsistency. This leads to quicker training 
and improved performance on tasks like abnormality 
detection in the VinDr-CXR dataset. Barlow Twins-CXR 
excels across various input resolutions, outshining mod-
els pre-trained on ImageNet.

One of the primary limitations of our study is the scar-
city of CXR datasets with bounding box. Our reliance on 
public datasets, due to the absence of a private dataset, 
may limit the generalizability of our findings. Additionally, 

Fig. 7 AUC Scores with Error Bars for NIH‑CXR Classification ‑ This figure displays the AUC scores of models fine‑tuned end‑to‑end with Barlow 
Twins‑CXR versus ImageNet weights across various dataset sizes (1%, 10%, 100%). Higher AUC scores indicate that models using Barlow Twins‑CXR 
consistently outperform those with ImageNet pre‑training. Error bars represent the range of scores across five experiments

Table 3 AUC scores in validation and test sets for models fine‑tuned end‑to‑end with varying pre‑training methods at 224 and 640 
input resolutions

Scores are presented with 95% confidence intervals

Model 1% 10% 100%

Barlowtwin‑CXR 0.6585 (0.6527, 0.6644) 0.7756 (0.7740, 0.7772) 0.8107 (0.8095, 0.8119)

Image‑Net 0.6163 (0.6087, 0.6239) 0.7168 (0.7062, 0.7274) 0.7866 (0.7833, 0.7899)
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the computational cost of the BarlowTwins pre-training 
remains substantial. For a dataset size of 112,120 images 
with an image size of 224*224 pixels, the training process 
required two days on an NVIDIA A100 80G GPU. This 
significant resource requirement constrained our ability 
to experiment with higher image resolutions, which could 
potentially enhance the model’s performance.

Future work
Our future endeavours include developing a demo inter-
active system for deployment and testing in emergency 
rooms. It will allow practical evaluation of the model’s 
effectiveness in a clinical setting and facilitate the col-
lection of a proprietary dataset. Additionally, we plan to 
explore more advanced self-supervised learning meth-
ods, object detection frameworks, and backbone net-
works to refine our approach further. The continuous 
evolution of these technologies promises to address some 
of the current limitations and expand the applicability 
and accuracy of our model in medical image analysis.

Conclusions
The results of this study provide strong support for the 
application of self-supervised learning in the field of 
abnormality detection, especially valuable in environ-
ments where radiologists face high workloads but the cor-
responding data labelling resources are scarce. A critical 
aspect of this approach is its adaptability to regional varia-
tions in CXR image, attributable to differences in imaging 
equipment, patient demographics, and other locale-spe-
cific factors [33, 34]. Such variations often impede the 
cross-regional applicability of a model, thus limiting its 
generalizability. By employing the BarlowTwins-CXR 
strategy, research organizations can transfer pre-trained 
backbone networks to local datasets tailored to the unique 
characteristics of their regional data.

Our findings might also have significant implications 
for clinical practice, suggesting that this strategy could be 
a game-changer in aiding radiologists to interpret CXR 
images efficiently. This technology promises to reduce 
diagnostic times, potentially increasing patients’ through-
put and improving the overall quality of care. Given its 
capacity for fine-tuning to specific regional characteris-
tics, our approach holds particular promise in areas where 
standardization of medical imaging presents challenges.

In summary, the BarlowTwins-CXR approach demon-
strates the potential of AI to enhance healthcare deliv-
ery. By integrating cutting-edge technology with clinical 
needs, we aim to pave the way for innovative solutions 
that benefit healthcare professionals and patients.
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