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Abstract 

Background Medical records are a valuable source for understanding patient health conditions. Doctors often 
use these records to assess health without solely depending on time‑consuming and complex examinations. How‑
ever, these records may not always be directly relevant to a patient’s current health issue. For instance, information 
about common colds may not be relevant to a more specific health condition. While experienced doctors can 
effectively navigate through unnecessary details in medical records, this excess information presents a challenge 
for machine learning models in predicting diseases electronically. To address this, we have developed ‘al‑BERT’, a new 
disease prediction model that leverages the BERT framework. This model is designed to identify crucial information 
from medical records and use it to predict diseases. ‘al‑BERT’ operates on the principle that the structure of sentences 
in diagnostic records is similar to regular linguistic patterns. However, just as stuttering in speech can introduce ‘noise’ 
or irrelevant information, similar issues can arise in written records, complicating model training. To overcome this, ‘al‑
BERT’ incorporates a semi‑supervised layer that filters out irrelevant data from patient visitation records. This process 
aims to refine the data, resulting in more reliable indicators for disease correlations and enhancing the model’s predic‑
tive accuracy and utility in medical diagnostics.

Method To discern noise diseases within patient records, especially those resembling influenza‑like illnesses, our 
approach employs a customized semi‑supervised learning algorithm equipped with a focused attention mechanism. 
This mechanism is specifically calibrated to enhance the model’s sensitivity to chronic conditions while concurrently 
distilling salient features from patient records, thereby augmenting the predictive accuracy and utility of the model 
in clinical settings. We evaluate the performance of al‑BERT using real‑world health insurance data provided by Tai‑
wan’s National Health Insurance.

Result In our study, we evaluated our model against two others: one based on BERT that uses complete disease 
records, and another variant that includes extra filtering techniques. Our findings show that models incorporat‑
ing filtering mechanisms typically perform better than those using the entire, unfiltered dataset. Our approach 
resulted in improved outcomes across several key measures: AUC‑ROC (an indicator of a model’s ability to distinguish 
between classes), precision (the accuracy of positive predictions), recall (the model’s ability to find all relevant cases), 
and overall accuracy. Most notably, our model showed a 15% improvement in recall compared to the current best‑
performing method in the field of disease prediction.
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Conclusion The conducted ablation study affirms the advantages of our attention mechanism and underscores 
the crucial role of the selection module within al‑BERT.

Keywords Disease prediction, Semi‑supervised learning, Attention, Health insurance data, Electronic medical records, 
EMR

Introduction
Electronic medical records (EMRs) serve as a detailed 
‘log’ of a patient’s health, encompassing a wide range of 
data including clinical diagnoses, treatment regimes, test 
outcomes, and patient-reported information. This wealth 
of data offers immense potential for deep learning appli-
cations in medical analysis. For instance, in assessing dia-
betes, the analysis of fundus retinal images has emerged 
as a highly effective tool. Utilizing deep learning models, 
these images are scrutinized to detect signs of diabetic 
retinopathy, a critical step in the early identification and 
management of diabetes and its associated complica-
tions. EMRs also play a pivotal role in the exploration of 
disease interrelations, providing a vast repository of data 
that enables researchers to delve into patient medical his-
tories and the evolution of diseases, thereby uncovering 
possible links and patterns among various health condi-
tions. Despite these benefits, the application of EMRs in 
forecasting present and future health states encounters a 
myriad of challenges.

In this paper, we study the research problem of predict-
ing a set of diseases that a patient may encounter over 
a forthcoming period, based on their electronic medi-
cal records. Solving this research problem of predicting 
future diseases from electronic medical records can offer 
numerous benefits across various aspects of healthcare 
and public health. Beyond merely considering electronic 
medical records as basic medical documentation, an 
interesting approach is to view them as a form of lan-
guage. Med-BERT [1] demonstrates that when disease 
records are transformed into sequences, it exhibit similar 
structures to sentences. However, when transitioning this 
model to our real-world EMRs, it demands some con-
siderations. First, unpredictable diseases cannot repre-
sent a patient’s characteristics. These diseases could be a 
noise in medical data, making prediction models give an 
improper result. For example, diseases in external causes 
of injury are not predictable, and such medical records 
could be noise for a model. Second, some diseases are 
very widespread, affecting patients of any age and in any 
geographic area. These types of diseases cannot ade-
quately represent an individual patient’s situation. Take 
influenza-like diseases as an example. These diseases typ-
ically spread widely during specific seasons, which limits 
their ability to accurately learn a patient’s overall health 
condition. Such characteristics in EMR might lead the 

trained disease prediction model to achieve impressive 
scores, but might result in lower practical utility in real-
world applications.

To overcome this problem, we developed a semi-
supervised attention learning method. The attention 
mechanism operates as a semi-supervised learning fea-
ture to identify redundant diseases, capture patient char-
acteristics, and output concise extracted information. 
Moreover, before activating the attention mechanism, we 
constructed a graph based on disease relations extracted 
from the electronic medical records for disease embed-
ding. This graph is built on the principles of comorbid-
ity and disease proximity [2], which imbues the resulting 
embeddings with medical significance. We combine the 
attention mechanism with BERT, the pre-trained model 
with the masked language model task, then fine-tuned 
our model with both masked language tasks and next 
sentence prediction tasks.

Since our model combines semi-supervised attention 
learning, graph embedding and pre-trained BERT, we 
named it al-BERT. The model is inspired by the behav-
ior of influenza-like disease in the Taiwanese administra-
tive medical database. Filtering out noise information to 
obtain concise patient data can aid in more accurate pre-
dictions. According to Marsden-Haug [3], influenza-like 
disease includes 28 diseases in the International Classifi-
cation of Disease, Ninth Revision (ICD-9)1.

The contributions of this paper can be summarized as 
follows:

• We propose a BERT-based model, al-BERT, which 
integrates a semi-supervised learning module with 
the attention mechanism to capture specific informa-
tion. The learning module mimics the disease assess-
ment process performed by domain experts, employ-
ing both Backward RNN and Bi-directional RNN to 
extract information from the input data.

• Our model combines domain knowledge, such as 
comorbidity and the distance between diseases, 
during the training process. The concept involves 
constructing graph embeddings prior to modeling, 
enabling us to attain more interpretable embedding 
results.

1 https:// www. cdc. gov/ nchs/ icd/ icd9cm. htm

https://www.cdc.gov/nchs/icd/icd9cm.htm
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• To identify the location of noise diseases, we employ 
a semi-supervised attention learning mechanism. We 
label specific segments as noise diseases, and then 
extract the results based on the model’s learning out-
comes.

• The al-BERT model is evaluated on a real-world 
dataset, which includes 18.2% of influenza-like dis-
ease cases that we consider as noise in the disease 
sequence. By leveraging the attention mechanism, our 
model aims to filter out the noise and focus on the 
crucial disease information for accurate prediction.

Related work
Machine learning on medical datasets
Machine learning is a powerful tool that can be applied 
to medical datasets to make predictions, automate pro-
cesses, and improve medical quality. It involves the use 
of algorithms to analyze and learn from data, enabling 
the creation of models that can make predictions or per-
form tasks without being explicitly programmed to do so. 
Medical datasets often contain large amounts of complex 
and heterogeneous data, making them well-suited for 
machine learning applications.

Different medical data refer to the information col-
lected and recorded about a patient’s health and medical 
history. This can include demographic information, such 
as age, gender, and race; personal and family medical his-
tory; lab test results; imaging studies; medication and 
treatment history; and notes and observations made by 
healthcare providers during patient encounters. Popular 
tasks include: readmission [4, 5] length of staying days [6, 
7], medical recommendation [8–10], drug-drug interac-
tion (DDI) [11, 12], and disease detection [13, 14].

Existing works usually apply multiple types of medical 
information to enhance the model.

G-BERT [8] considers medical ontology to strengthen 
medical prediction. Medical codes such as drugs or dis-
eases contain natural hierarchical structures, which are 
hard to observe in patient health records. G-BERT uses 
ICD9 ontology for diagnosis and ATC ontology for medi-
cation. Ontology trees help to embed different codes in 
records. These codes were applied to BERT, then com-
bine a visit embedding for an input record. G-BERT 
applies ontology information to enhance embedding 
quality.

RETAIN [15] considers diagnosis, medication, and 
procedure information for disease prediction. This 
information is encoded into an input sequence, an is 
then embedded into a vector. RETAIN applies attention 
reversely to pay more attention to recent visits.

CONAN [13] is a model for rare disease detection. 
Rare disease here indicates diseases that are individu-
ally rare but collectively common. These diseases are 

easily misdiagnosised due to the lack of content infor-
mation about the patient. CONAN considers medical 
codes, diagnosis codes, and procedures to construct a 
network, then applies GAN with complementary pattern 
augmentation.

Dipole [16] is a paper that presents a novel approach 
to healthcare diagnosis prediction from historical Elec-
tronic Health Records (EHRs). The authors propose 
using attention-based bidirectional recurrent neural net-
works (RNNs) to analyze patient data and predict poten-
tial medical diagnoses. Attention mechanisms in Dipole 
measure relationships between visits, enabling effective 
result interpretation. Experimental results on real-world 
EHR datasets demonstrate that Dipole significantly 
improves prediction accuracy compared to state-of-the-
art methods, and offers clinically meaningful interpre-
tations, advancing the field of diagnosis prediction in 
healthcare.

MMGL [17] employs modality-aware representation 
learning to aggregate features from each modality, lever-
aging both the correlation and complementarity between 
them. Instead of manual graph definition, the latent 
graph structure is captured through an effective adaptive 
graph learning approach. This enables joint optimization 
with the prediction model, thereby unveiling intrinsic 
connections among samples.

MedSkim [18] addresses the challenge of health risk 
prediction using electronic health record (EHR) data. 
Existing approaches often struggle with noisy EHR data. 
To address this, the authors introduce MedSkim, a novel 
model designed to automatically remove irrelevant visits 
and codes from EHR data, thereby improving prediction 
performance. MedSkim employs a code selection mod-
ule to skip irrelevant diagnosis codes, a backward prob-
ing RNN for coarse-grained representation learning of 
visits, and a forward skipping RNN to dynamically select 
important visits and codes. The risk prediction mod-
ule utilizes the output of the forward skipping RNN for 
final predictions. The model also includes a regulariza-
tion term based on skip rate, and combines it with cross-
entropy loss for end-to-end training.

Considerations of cross columns or cross datasets are 
common. Problems can be solved by having more infor-
mation, but it is more complicated to construct a suitable 
network for models.

Language model on medical datasets
Medical records behave similarly to natural language. 
Therefore, natural language has been used in disease 
prediction for the analysis of patients’ medical records, 
symptom descriptions, and other relevant data to identify 
potential diseases and make predictions.
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Graph Convolutional Transformer (GCT) [19] 
extends Transformer [20] to construct a graph from 
medical data, then applies graph convolutional networks. 
GCT captures structural information in most types of 
health records, even those which did not provide a struc-
tural relation. They also construct a probability matrix in 
which each element is defined by the conditional prob-
ability of previous records. This matrix helps guide self-
attention to learn the structure in medical data.

med2vec [21] is a work applying the skip-gram method 
to capture the visit representation of health records. A 
similar strategy is used in word2vec [22]. Medical codes 
are transferred to a binary vector, and are then com-
bined into a visit representation according to patient 
records. Med2Vec incorporates both code co-occurrence 
information and visit information of the health records. 
Applying the skip-gram method and combining co-
occurrence and visit information help improve the accu-
racy of both code and visit representations. Also, they 
provide a state-of-the-art medical embedding method.

Cui2vec [23] is a deep learning model that represents 
medical concepts in a vector form. It works by mapping 
all the medical concepts into a common concept unique 
identifier space using the thesaurus from the Unified 
Medical Language System (UMLS). Differing with med-
2vec, cui2vec embeds medical codes into vectors based 
on words. Besides disease and drugs, medical related 
journals and clinical notes can also be transferred to vec-
tors by cui2vec. Cui2vec provides a scalable and flexible 
way of representing medical concepts in a compact and 
meaningful form.

Med-BERT [1] is a method which extends BERT. The 
authours apply patient visit records to train their model. 
Each patient’s visit record is considered as a sentence, 
and medical codes are considered as words. Visit records 
are arranged to formulate a BERT readable structure 
without additional datasets and external models. Med-
BERT is trained by the masked language model and the 
next sentence prediction, and is fine-tuned by the masked 
language model. The fine-tuning and experiment result 
shows that the meaning of diseases can be learned well by 
the contextual structure of the health records.

CoQUAD [24] is a question-answering system 
designed for efficient extraction of answers related to 
COVID-19 questions. Focused on text-based tasks, 
CoQUAD includes two datasets: a reference-standard 
dataset derived from CORD-19 and LitCOVID, and a 
gold-standard dataset curated by public health experts. 
It is trained on the BM25 algorithm to search the refer-
ence-standard dataset for relevant documents based on 
COVID-19-related questions. Additionally, it features a 
Reader component consisting of the Transformer-based 

model MPNet, which reads paragraphs and extracts 
answers from retrieved documents. In general, CoQUAD 
performs extraction after the question-answer process, 
aiming to obtain a more concise answer.

Preliminary
This section introduces essential definitions and outline 
the problem statement that will be further explored and 
addressed in the later sections.

Definition 1 (Electronic medical records). Let 
EMRp = �EMRp,1,EMRp,2, . . . ,EMRp,m� represent the 
electronic medical records of a patient p , where each 
EMRp,i is a tuple (dti, di,1, di,2, · · · , di,mi) . Here, dti is the 
date of the i-th visit, di,j is the disease code of the j-th 
diagnosis on date dti and mi represents the maximum 
number of diseases present in any diagnosis, a value that 
can vary across different datasets. We can also represent 
EMRp into EMR if we are not emphasizing a specific 
patient p.

For example, given the example in Fig.  1, the elec-
tronic records of this patient is represented as 
〈(2013-11-11, 250.0, ǫ, ǫ), (2013-11-21, 726.0, 438.5, 847.0),

(2013-12-05, 250.0, ǫ, ǫ), (2013-12-09, 414.0, 401.9, 250.0)〉.

Definition 2 (Disease Sequence). Given EMR = �EMR1,EMR2, . . . ,EMRm� 
where EMRi = (dti, di,1, di,2, · · · , di,mi

) , the disease sequence is 
defined as D = �di,j | 1 ≤ i ≤ n, 1 ≤ j ≤ mi , di,j �= ǫ� . Without ambiguity, we 
denote D = d1, d2, ..., dn .

The disease sequence extracts the order of dis-
ease codes occurring in electronic medical records, 
which can help us to understand the temporal rela-
tionship of disease occurrences. Following the 
same example, the electronic records in Fig.  1 is 
〈(2013-11-11, 250.0, ǫ, ǫ), (2013-11-21, 726.0, 438.5, 847.0),

(2013-12-05, 250.0, ǫ, ǫ), (2013-12-09, 414.0, 401.9, 250.0)〉 . 
The disease sequence can be derived as: 〈250.0, 726.0,
438.5, 847.0, 250.0, 414.0, 401.9, 250.0〉.

Definition 3 (Visit Sequence). Given EMR = �EMR1,EMR2, . . . ,EMRm� 
where EMRi = (dti , di,1 , di,2 , · · · , di,mi

)

 . The visit sequence is define 
as VS = �VS1,VS2, ...,VSm� where VSi = {ik |k = argmaxj{di,j �= ǫ}}.

Follow Fig.  1 again. The first visit has only one diag-
nosed disease, so the positional enumeration for this visit 
is 〈1〉 . The second visit has three diagnosed diseases, so it 
is 〈2, 2, 2〉 . The third one has one diagnosed disease, hence 
〈3〉 . The fourth one has three, so hence 〈4, 4, 4〉 . Therefore, 
our visit sequence is VS = �1, 2, 2, 2, 3, 4, 4, 4�.
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Definition 4 (Time Interval Sequence). Given 
EMR = �EMR1,EMR2, . . . ,EMRm� where EMRi = (dti , di,1, di,2, · · · , di,mi

)
 . 

The time interval sequence is define as TIS = �TIS1,TIS2, ...,TISm� 
where TISi = (dti − dti−1, 0, ..., 0) . For the convenience of com-
putation, we set dt0 = dt1.

Consider the example given in Fig.  1. We have 
dt1 = 2013-11-11 , dt2 = 2013-11-21 , dt3 = 2013-12-05 
and dt4 = 2013-12-09 . For the first visit, we set 〈0〉 . For 
the second visit, since the time interval compared to the 
previous visit is 10 days, and there are three diagnosed 
diseases, we set 10 corresponding to the first disease, and 
0 corresponding to the following two diseases. Hence, we 
have 〈10, 0, 0〉 . Similarly, the third visit has 〈14〉 and the 
fourth visit has 〈4, 0, 0〉 . Therefore, our final time interval 
sequence is TIS = �0, 10, 0, 0, 14, 4, 0, 0�.

The visit sequences and the time interval sequences will 
be utilized to derive disease embeddings in BERT later on.

Definition 5 (Noise Disease Set). The noise disease 
set of a disease d is a set of diseases S = {s1, s2, · · · , sm} 
which are relatively not important to d.

Noise disease set is usually chosen by the domain 
expert and aims to reduce the significance in predict-
ing the comobilities of given the disease d. For exam-
ple, influenza cases are usually seasonal and more likely 
to be influenced by the environment compared to other 
diseases. Therefore, influenza cases are perfectly suited 
to be considered as noise diseases. On the other hand, 
from patients’ electronic medical records, we can find the 
comorbidity of a disease by generalizing Valderas’ defini-
tion of comorbidity in the medical field [25].

Definition 6 (Comorbidity). Given a trigger disease 
dtrigger , a target disease dtarget is a comorbidity of dtrigger 
if dtarget  = dtrigger and dtarget manifests after dtrigger has 
occurred k times. Here, the parameter k varies depending 
on specific conditions within different datasets.

The trigger disease here refers to the disease we are 
going to observe its comorbidities, that is, its target 
diseases. It is also worth mentioning that a trigger dis-
ease can be associated with multiple target diseases. 
Consider the example in Fig. 1. Let dtrigger = 250.0 and 
k = 2 . The disease 401.9 is recognized as the comor-
bidity of 250.0 since 401.9 manifests after 250.0 has 
occurred in 2013-11-11 and 2013-12-05. Theoreti-
cally, we can designate any disease as a trigger disease 
if we choose to include its comorbidity in our model. 
In practice, not all diseases need to be considered as 
trigger diseases in practice, since some conditions, 
like appendicitis, are known not to be linked to other 
diseases.

Building on the definition of comorbidities, we can 
construct a comorbidity graph to explore the relation-
ships among them.

Definition 7 (Comorbidity Graph). A comorbid-
ity graph is defined as an undirected graph G = (V ,E) , 
where each vertex v ∈ V  represents a disease that 
appears either in the set of trigger diseases Dtrigger or 
their corresponding target diseases Dtarget . An edge 
(u, v) ∈ E exists if disease u is a target disease of v or 
v is a target disease of u . The weight of an edge (u, v) is 
wt(u, v) = 1

Nuv

∑Nuv

k=1 |Ru,k − Rv,k |Fk where Nuv is the 
number of common comorbidities of u and v , Ri,j denotes 

Fig. 1 An example of how we transfer an electronic medical record from a patient from tabular data to a sequence. For the disease sequence, we 
extract each diagnosis record and list them in chronological order. For visit enumeration, we enumerate each visit sequentially. For the time interval, 
we set the first diagnosed disease as 0 and then calculate the day interval between each diagnosed disease and the previous one
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the rank of disease i in the frequent comorbidity list of 
disease j , and Fk is the Shannon entropy of disease k2.

Figure 2 illustrates the process of constructing a comor-
bidity graph. Consider three trigger diseases: 250.0, 401.9, 
and 272.4, with their corresponding target diseases being 
{401.9, 272.4}, {414.9, 437.0}, and {437.0}, respectively. Since 
401.9 is a target disease of 250.0, an edge (250.0, 401.9) 
exists in the comorbidity graph. Similarly, 401.9 serves 
as the trigger for target disease 414.9, resulting in an edge 
(401.9, 414.9) in the graph. In this manner, the entire 
comorbidity graph is constructed, as shown in Fig. 2. In this 
work, the trigger diseases are selected by the approach out-
lined in Yang’s work [27]. A disease that appears more than 
twice in a single patient’s record and is identified as having 
comorbidities is selected as a trigger disease. To minimize 
redundancy, we exclude noise diseases and those diseases 
that occur in less than 1% of patients.

Having outlined the necessary definitions, we now 
introduce the research problem in this paper.

Problem 1 (Disease Prediction Problem). Let EMR be 
the electronic medical records of a patient, S be a noise 
disease set, G be the comorbidity graph, and T be a time 
duration. The goal is to predict the diseases being diag-
nosed over a future period of length T.

This section ends with Table 1 for the convenience of 
the readers. This table provides a list of the symbols and 
parameters used throughout this paper.

Method
Overview
Figure 3 shows the overview of al-BERT, the proposed 
method. al-BERT contains two modules: the learning 

module and the BERT module. The learning module 
adopts semi-supervised attention learning mechanisms. 
The attention mechanism is applied twice to the embed-
ded disease sequence: one iteration is focused on 
denoising, while the other is directed towards captur-
ing overall attention. Denoised attention reads the input 
disease backwards to capture the diseases in noise dis-
ease set S, and full attention learns characteristics for 
the input disease sequence. We combine the results, 
then apply attention to learn the adjusted results for all 
of the diseases in the record. The disease sequence after 
the second attention layer can be transferred to weights 
of the diseases sequence. We set a threshold to extract 
essential diseases to formulate the patient’s characteris-
tics, then input selected diseases to the BERT module.

The inspiration for the learning module stems from 
the need to reduce influenza-related data within the dis-
ease records, because influenza provides limited infor-
mation for disease prediction problems. MedSkim [1] 
similarly utilizes this concept, but it skims through all 
disease records, whereas al-BERT selectively targets and 
reduces the number of diseases for advanced analysis. 
In this paper, we specifically focus on diseases related to 
influenza-like disease, and we reference these influenza-
related diseases using codes from [3].

We integrate the concept of comorbidity into our 
model by constructing a disease graph that captures 
the relationships between diseases. A comorbidity 
graph provides insights into these relationships, ena-
bling us to utilize it for graph embedding to generate 
an embedding vector for each disease. Additionally, we 
incorporate comorbidity information into the BERT 
module by determining the next sentence label based 
on identified comorbidities. Importantly, this comor-
bidity information is extracted directly from the data-
set, eliminating the reliance on external data sources. 
By conducting an in-depth analysis of disease co-
occurrence patterns within the dataset, we are able to 

Fig. 2 This figure shows a toy example demonstrating the construction of a comorbidity graph for our model. The comorbidity graph is built based 
on identified comorbidities. Each node in the graph represents a disease, and a link is established between pairs of comorbidity diseases

2 We design the edge weights by extending Yang’s methodology, which 
considers shared comorbidities, the frequency of concurrent disease occur-
rences, and Shannon entropy. Interested readers are encouraged to refer to 
their work [26] for more detailed information.
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accurately identify comorbidities associated with spe-
cific diseases.

Learning module: attention mechanism
We apply the semi-supervised attention mechanism 
to capture the importance of disease sequences. Our 
approach involves modifying the attention mechanism 
to include two layers. The first layer comprises two par-
allel attention mechanisms. It is tasked with learning 
the overall patterns within the disease sequences and 
identifying the diseases in the noise disease set S. The 

attention mechanism for overall patterns applies bidi-
rectional RNN, while the component responsible for 
noise reduction operates reverse RNN. These outputs 
are then passed through a softmax function. The out-
put from the first layer is then used as input for the sec-
ond attention layer. In the second layer, another round 
of attention is performed based on the results obtained 
from the first layer. The second attention layer outputs 
the weight and label of the disease sequence, providing 
valuable information regarding the importance and rel-
evance of each disease in the sequence.

Table 1 Symbols used in this paper

Symbol Description

EMR An electronic medical record from a patient

EMRi The ith visit of a patient’s EMR

dti The record date of the ith visit EMRi

di,j The jth recorded disease of ith visit

D The disease sequence of a patient consist of diseases

dk The kth element in D

VS The visit sequence of a patient consists of visit enumerations

VSk The kth element in VS

TIS The time interval sequence of a patient consists of time intervals with respect to the previous diseases

TISk The kth element in TIS

S Noise disease set. Unimportant diseases identified by domain experts in our study

dtrigger Trigger disease. The disease we have selected and for which we wish to find closely related diseases

dtarget Target disease. The diseases closely related to the selected trigger disease

G A graph, specifically referring to the comorbidity graph in our work

X The embedded diseases

xi A vector in X representing the embedding vector of disease dk
k A specified variable we use to determine when to insert the [SEP] token

T A specific time slot that we want to focus on for prediction

[SEP] A token located between dtrigger and dtarget
X ′ An extracted disease sequence, where X ′ ⊂ X

α,β Adjustable parameter

Fig. 3 The framework of our work. Our model, al‑BERT, is named after attention learning and BERT. al‑BERT comprises two primary sections: 
the semi‑supervised learning attention module and the BERT module. The red blocks indicate the output of this model, with the “label” block 
assisting in training the attention weights. al‑BERT processes the input disease sequence through a double attention layer to capture crucial 
information from the sequence, and then employs the BERT model to predict the outcome of future disease
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The first attention layer consists of two attention 
blocks: the full sequence attention block and the noise 
reduction attention block.

• Full Sequence Attention block: This block utilizes 
a bidirectional recurrent neural network to capture 
the influence of each disease in the entire sequence. 
The bidirectional recurrent neural network allows 
us to consider both the forward and backward con-
texts of the diseases, enabling a comprehensive 
understanding of their dependencies and relation-
ships within the sequence.

• Noise Reduction Attention block: This block is 
designed to focus on learning the importance of a 
subsequence of the original disease sequence. To 
achieve this, we employ a reverse recurrent neural 
network that takes into account the temporal order 
of the diseases. By considering the sequential infor-
mation, the model can effectively capture the rela-
tive importance of each disease based on its posi-
tion in the sequence.

The combination of these two attention blocks enables 
our model to capture both the global influence of dis-
eases in the entire sequence and the specific impor-
tance of the selected disease, enhancing its ability to 
make accurate predictions.

To form our learning module mathematically, con-
sider a disease sequence �d1, d2, · · · , dn� . Each disease 
dk can be embedded into a vector xk . These embed-
ded disease vectors, X = �x1, x2, · · · , xn� , are then input 
into the two attention blocks to capture the atten-
tion weights and labels associated with the disease 
sequence.

In the above equation, W is the embedding matrix. 
Wt , Ŵt ∈ R

p×q , b, b̂ ∈ R
p , Wy, Ŵy ∈ R

q×q and by, b̂y ∈ R
q 

are parameters to learn. σ1 and σ2 are a non-linear acti-
vation function. In our case, we choose the sigmoid 
function σ1 and the hyperbolic tangent function σ2 . For 
simplicity, let us denote ht as the hidden layer of the full 
attention block, and ĥt as the hidden layer of the noise 
attention block.

The outputs from the two blocks in the first layer of 
attention are combined using the adjustable parameters 
α and β . These parameters are adjusted based on the 
conditional probability of diagnosing trigger disease, 
diagnosing target diseases, and influenza-like disease. α 

(1)

ht = σ1(Wtht−1 +Wxt + b)

ĥt = σ1(Ŵt ĥt−1 + Ŵxxt + b̂)
yt = σ2(Wyht + by)

ŷt = σ2(Ŵyĥt + b̂y)

represents the likelihood of diagnosing the trigger dis-
eases in general, while β signifies the likelihood of diag-
nosing the trigger disease specifically when the patient 
has a prior diagnosis of influenza-like disease. This 
combination is represented as:

The second attention layer follows the original Trans-
former straightforward:

After applying the second attention layer, the attention 
vector is obtained for each position in the sequence. This 
attention vector, denoted as a = (a1, a2, · · · , an) , repre-
sents the importance or relevance score assigned to each 
disease in the sequence. By considering these attention 
scores, we can evaluate the significance of each disease 
and use them in subsequent steps, such as disease predic-
tion or further analysis.

To evaluate the prediction label, we apply attention 
vector a with learnable matrix W ′ and parameter b.

Overall, the learning module in al-BERT plays a cru-
cial role in focusing on specific parts of the input disease 
sequence. The first attention layer, encoded by a recur-
rent neural network (RNN), captures the overall patterns 
in the full disease sequence and the noise diseases, result-
ing in new disease vectors denoted as vt . The second 
attention layer operates on these new disease vectors and 
calculates attention weights for each disease. These two 
layers are combined then passed through a second atten-
tion layer to obtain the final disease representation vec-
tor. This module enables our model to effectively capture 
the essential information and dependencies within the 
disease sequence, facilitating accurate disease prediction 
and analysis.

Extracted patient records
To extract information from the attention layer, we utilize 
the learned attention scores (a1, a2, . . . , an) . We introduce 
a threshold θ ∈ (0, 1) and define a dense function fs for the 
context vector. If the value of fs(ai) exceeds the threshold 
θ , it indicates that the disease di is considered important 
and is included in a new disease sequence D′ . Each dis-
ease in D′ is included in D, i.e., D′ ⊂ D . If the disease is 
filtered out, we pad 0 in the end of sequence to keep the 
disease sequence the same length. By applying this thresh-
olding mechanism, we can filter out less relevant diseases 

(2)vt = αht + βĥt

(3)Attention(Q,K ,V ) = softmax

(

QK⊺

√

dimk

)

V

(4)y = Sigmoid(W ′ · a+ b)ŷ =
∑

i

= 1nyi
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and focus on the diseases that have a higher impact or sig-
nificance in the context of disease prediction.

BERT module: training
The BERT module leverages BERT to understand the 
contextual relationships among diseases from given dis-
ease sequences. By treating each disease as a word and a 
sequence of diseases as a sentence, we can borrow BERT 
to discern the sequential relationships between diseases 
in a manner akin to how BERT comprehends relation-
ships within sentences. Med-BERT is one of the work 
demonstrated this concept [1]. However, numerous noise 
diseases - which are less critical for disease prediction - 
often appear in disease sequences. These noise diseases 
can reduce the accuracy of disease prediction, as they 
disrupt the contextual understanding of diseases much 
like stuttered words in a sentence. Consequently, it is cru-
cial to identify and remove these noise diseases from the 
sequences. A significant challenge arises because it is dif-
ficult for domain experts to enumerate all noise diseases 
associated with the given trigger diseases. To address 
this, we have developed a semi-supervised approach to 
identify potential noise diseases using a small labeled set 
of noise diseases, denoted as S. Details of this approach 
will be discussed later in this section. Once noise dis-
eases have been identified and excluded in the learning 
module, we expect that our input sequence in the BERT 
module will be more coherent and refined compared to 
the original sequence. In the BERT module, we utilize a 
transformer architecture similar to that described in the 
original BERT paper by Devlin et al. [28]. We also adopt 
pretraining techniques similar to those used in the origi-
nal BERT model. Our model, referred to as al-BERT, is 
pre-trained using two tasks: the masked language model 
and next sentence prediction. These tasks enhance the 
model’s ability to understand and generate meaningful 
disease predictions. For the disease sequence D′ , which 
is the selected result after the attention module, al-
BERT performs token embedding, segment embedding, 
and positional embedding, similar to how BERT oper-
ates. In detail, token embedding is applied to the disease 
sequence D, segment embedding to the visit sequence 
VS, and positional embedding to the time interval 
sequence TIS.

The masked language model
The techniques used in the masked language model task 
draw inspiration from BERT [28] and Med-BERT [1]. 
The task involves randomly masking certain input dis-
ease tokens, akin to Cloze tasks in the literature. When 
a position is masked, there is a 70% probability of it 
being replaced by a [MASK] token, a 15% probability of 
being replaced by a random code, and a 15% probability 

of remaining unchanged. This approach aids the model 
in learning disease characteristics within the context of 
previous and current diagnosed diseases, enhancing its 
ability to make accurate predictions. Additionally, it helps 
the model understand the significance of each disease 
statement within a disease sequence.

Next sentence prediction
The Next Sentence Prediction (NSP) task is one of the 
two pre-training objectives used in the original design of 
the BERT model. The NSP task is given pairs of sentences 
as input and must predict whether the second sentence 
is the true subsequent sentence that follows the first sen-
tence in the original document, or if it is a random sen-
tence from the corpus. Here, the [SEP] token, short for 
separator, is used in BERT to mark different segments or 
sequences within a single input. In the case of NSP, where 
BERT must handle two distinct sentences to determine if 
they are sequentially related, [SEP] is used to clearly indi-
cate where one sentence ends and the next begins.

In al-BERT, we use the trigger disease and target dis-
ease to separate the disease sequences for training. For 
each input disease sequence, we identify a length k that 
includes the trigger disease in the sequence. Following 
the appearance of the trigger disease, we insert a [SEP] 
token after the visit sequence containing the trigger dis-
ease. If any of the diseases in the target set occur after the 
visits where we input the [SEP] token, we label this pair 
as the next sentence.

Figure 4 shows an illustrative example of the next sen-
tence prediction task in al-BERT. We selected the trigger 
disease as 401.9 (Hypertension), chose the target disease 
as 250.0 (Diabetes mellitus without mention of compli-
cation), and set the trigger length k=2. Essentially, this 
configuration aims to ascertain the potential diseases that 
could occur in a patient who has been diagnosed with 
diabetes. For patient A, we inserted a [SEP] token after 
401.9, its corresponding visit, and time interval, which 
represent the trigger disease occurring twice, in order 
to examine the targets. Since 250.0 occurred after [SEP], 
the label for patient A is set to 1. The same configuration 
applies to patient C, but in this case, the target 250.0 did 
not occur after [SEP], resulting in a label of 0. If a patient 
has been detected with either trigger or target diseases, 
but the count of trigger occurrences is less than k, we still 
append a [SEP] token to the end of the disease sequence 
and set the label to 0. This ensures that even if there is 
insufficient trigger information, the patient is included 
in the analysis while not affecting the label for the target 
disease. However, in cases where a patient has never been 
recorded with any trigger or target diseases, like patient 
D, we exclude that patient from the analysis.
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The selection of the trigger disease and target disease 
set is based on the concept of comorbidity in diseases 
[25] and Dr. Yang’s study on the distance between dis-
eases using rank order statistics [2]. This choice allows al-
BERT to learn the associations and relationships between 
the trigger disease and the target disease set, enabling it 
to better understand the context and make predictions 
about future diseases based on a given disease.

In the pre-training stage of al-BERT, when selecting 
disease sequences for the next sentence prediction task, 
we assign labels to 20% of the data as the next sentence 
and the remaining 80% as not the next sentence. The set-
ting of 20% and 80% is due to the imbalance in the occur-
rence of comorbidity cases in the dataset.

Specifically, for the 20% of records labeled as “the next 
sentence”, the disease sequence includes the trigger dis-
ease ( dtrigger ), and our target disease ( dtarget ) occurs after 
the trigger disease in the sequence. These records rep-
resent the positive examples for the next sentence pre-
diction task. On the other hand, for 80% of the cases 
where patient records have been labeled as “not the next 
sentence”, the disease sequence either includes the trig-
ger disease dtrigger occurring under the setting of trigger 
occurrences k, or dtrigger happens more than k times but 
the target disease dtarget did not occur.

By training al-BERT with both positive and nega-
tive examples, it learns to understand the relationships 
between the trigger disease and the target disease set, 
enhancing its ability to predict future diseases based on a 
given disease in the downstream prediction tasks.

BERT module: fine‑tuning
In fine-tuning al-BERT, our focus centers on the Next 
Sentence Prediction (NSP) task, which aims to predict 
the subsequent disease in a patient’s medical history 
based on comorbidity relationships, as detailed in “Next 

sentence prediction” section. This task closely aligns with 
real-world clinical scenarios, enabling al-BERT to antici-
pate complex disease sequences, including those arising 
from comorbidity patterns.

Our fine-tuning process optimizes al-BERT for this 
NSP task, harnessing the knowledge within the dataset 
to accurately predict evolving disease sequences. This 
equips al-BERT to contribute significantly to predictive 
healthcare analytics, enhancing disease management and 
patient care.

Downstream tasks for al‑BERT
Our adaptation of al-BERT builds on the Med-BERT 
architecture, introducing a double attention module 
before the input of disease sequences into the BERT 
framework. This module enhances al-BERT’s ability 
to capture intricate disease relationships and contex-
tual information, significantly improving its predictive 
capabilities.

To make al-BERT adaptable to downstream tasks, a 
classification layer or prediction head is added atop the 
pretrained model, following a similar approach as with 
Med-BERT. During the fine-tuning process, the parallel 
double attention layer and prediction head are attached 
to the al-BERT architecture. Parameters of al-BERT are 
loaded and initialized from the pretrained model, and 
both al-BERT parameters and prediction head param-
eters are updated using gradient descent. Our primary 
downstream task for al-BERT involves disease predic-
tion within electronic medical records (EMRs), with a 
specific emphasis on the NHI-CD dataset. This task 
is geared towards predicting the next potential dis-
ease in a patient’s medical history based on their past 
disease records. Such a task holds immense signifi-
cance in healthcare analytics, as it empowers early dis-
ease detection, proactive healthcare management, and 

Fig. 4 This figure demonstrates the placement of the [SEP] token and the process of setting next sentence prediction labels. The trigger disease 
is highlighted in red, while the diseases in the target disease set are shown in purple, and the other disease are shown in green
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personalized treatment strategies. To initiate the mod-
el’s processing, we input a disease sequence into the 
model. The learning module diligently filters out redun-
dant diseases, and subsequently, the BERT module 
undertakes the task of predicting whether the patient is 
likely to develop the target disease in the future based 
on this refined sequence. This refined sequence helps 
enhance the fluency of predictions and contributes to 
the model’s overall effectiveness in disease prediction 
within EMRs.

Experiments
The study’s objective is to forecast forthcoming dis-
eases using prior diagnosis records. The process involves 
learning and mitigating the impact of inconsequential 
diseases, verifying the presence of particular diseases 
(trigger), and predicting whether the patient is likely to 
develop related (target) diseases in the future.

Dataset
We evaluate al-BERT on two datasets: MIMIC-III [29] 
and Ambulatory care expenditures by visits (CD) from 
the Taiwan National Health Insurance (NHI) Research 
Database (Table 2).

NHI‑CD
NHI-CD is one subset of medical data collected by NHI. 
NHI collects health and medical records from all legal 
hospitals and clinics. NHI-CD extract records using a 
systematic sampling method on a monthly basis, together 
with the related records in details of ambulatory care 
orders (OO) from the Systematic Sampling CD.The data-
set is double encrypted to protect patient privacy. Theo-
retically, it is impossible to track back to the patient, even 
for doctors. NHI-CD is commonly used in research by 
doctors in Taiwan (Figs. 5 and 6).

The NHI-CD dataset consists of around 1,000,000 ran-
domly selected patients from the NHI collected records, 
which are updated every 5 years. To ensure efficient 
training of our model, these patients were randomly 
divided into 25 partitions, denoted as R301 to R325. 
Statistical analysis revealed no significant difference in 
the gender and age distribution of the patients in R301 
(comprising 39,807 patients) and the full NHI-CD data-
set (comprising 995,318 patients). Therefore, we selected 
R301 as our experimental dataset for further analysis and 
model development.

Table 2 Statistics of the data

Items MIMIC‑III v1.4 NHI‑CD‑R301

patients 46,520 39,807

total visits 58,976 7,728,574

diagnosis 651,047 10,907,751

time interval length 10 years 17 years

Fig. 5 Gender ratio in NHI‑CD‑R301 and Full data of NHI‑CD, illustrating that R301 has no significant difference in gender distribution from NHI‑CD. 
U represents unknown gender
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MIMIC‑III
MIMIC-III (Medical Information Mart for Intensive 
Care III) is a large, freely accessible database of de-
identified electronic health record data for patients who 
were admitted to critical care units at the Beth Israel 
Deaconess Medical Center between 2001 and 2012. It 
is commonly used for research purposes and has been a 
valuable resource for many studies in critical care, health 
informatics, and machine learning.

ICD coding
Both NHI-CD and MIMIC-III contain Ambulatory care 
expenditures by visits, and each disease is encoded into 
the International Classification of Diseases, Ninth Revi-
sion, Clinical Modification (ICD-9-CM) codes3. Accord-
ing to guidelines provided by the National Health 
Insurance, the diseases recorded before 2006 follow the 
ICD-9-CM 1992 coding system, while those recorded 
after 2006 follow the ICD-9-CM 2001 coding system. 
While both MIMIC-III and NHI-CD are datasets from 
a single region, we do not consider variations from dif-
ferent regions. In our method, since we consider only the 
4th digits of the diseases’ ICD9 codes, they remain the 
same across different versions in different years. Moreo-
ver, ICD-9-CM is completely comparable with the ICD-9. 
For brevity, we will refer to the codes as ICD-9 in the fol-
lowing. Compared with ICD-9, ICD-10 provides a more 
detailed classification system that allows for a greater 
specificity in coding medical conditions, which improves 

the ability to measure health care services, monitor pub-
lic health, and conduct global epidemiological research. 
ICD-10 has a more complex structure and can accom-
modate a larger number of entries and more precise 
information. Since both ICD-9 and ICD-10 share similar 
structures, with disease categories remaining unchanged 
across different versions and there are also tools to con-
vert ICD-9 to ICD-10, we believe that our model can be 
adaptable to fit the diseases with ICD-10 coding.

Implementation
Noise disease set
Since al-BERT is inspired by the high frequency of 
recorded influenza-like illness cases within the NHI-CD 
dataset  (Fig.  7), we chose influenza-like diseases which 
are defined in [3] as the noise disease set S. The disease in 
this set are listed in Table 3.

Trigger and target disease set
In this scenario, our aim is to analyze the predictive influ-
ence of the prevalent disease, hypertension (401.9), on 
a patient’s health. We selected hypertension due to its 
higher prevalence in the dataset compared to acute upper 
respiratory infections (465.9), which represents a form of 
influenza-like disease. The next sentence prediction labels 
are determined by considering 401.9 as the trigger disease 
and selecting its top 6 related diseases as the target disease 
set. The target diseases include 402.9, 414.9, 250.0, 413.9, 
272.4, and 401.1. The full names of these diseases can be 
found in Table 4. The disease information was extracted 
from the website http:// www. icd9d ata. com/.

Fig. 6 Age ratio in NHI‑CD‑R301 and Full data of NHI‑CD, illustrating that R301 has no significant difference in age distribution from NHI‑CD

3 https:// www. cdc. gov/ nchs/ icd/ icd9cm. htm

http://www.icd9data.com/
https://www.cdc.gov/nchs/icd/icd9cm.htm
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Statistical difference of selected diseases
In this section, we discuss and provide reasons why we 
select the influenza-like diseases as noise diseases, and 
selected hypertension and its related diseases as the trig-
ger and targets. As we predict and learn based on diagno-
sis records instead of data providing pharmacology and 
medical information, we observe the diagnose day inter-
val of the same diseases. Figure 8 illustrates the statisti-
cal day intervals among all 27 influenza-like diseases and 
specifically for two diseases in the set, 465.9 and 401.9. 
The data show a typical pattern where diagnoses are 
often made within 10 days and exhibit only a single peak. 
This indicates that influenza-like diseases tend to be 
shorter-term diagnoses, occurring somewhat randomly 
over time.

On the contrary, Fig.  9 depicts the statistical day 
intervals between the trigger disease 401.9 and its cor-
responding target diseases. In this figure, it is notice-
able that 401.9 and its related diseases exhibit similar 
characteristics. Their revisit day intervals show four dis-
tinct peaks. Figures  8 and  9 show the distinct patterns 
in the day intervals between diagnoses of specific dis-
eases. While influenza-like diseases exhibit a single peak 
around a 10-day interval, suggesting shorter-term diag-
noses that occur sporadically, the trigger disease 401.9 
and its related diseases present a more structured pattern 
with multiple distinct peaks in their revisit day intervals.

Length of disease sequences
Figure 10 displays the statistical distribution of both the 
number of visits per patient and the lengths of disease 
sequences. The data reveals that the average number of 
visits is 27.34 with a standard deviation of 20.93. In this 
study, each diagnosis can result in multiple disease codes, 
which collectively form disease sequences. The average 
length of these sequences is 51.45, accompanied by a 
standard deviation of 43.36. Based on these statistics, dis-
ease sequences shorter than the average length of 51 are 
padded with zeros until they reach this average length.

Adjustable parameter
The selection of adjustable parameters relies on the 
conditional probabilities in our dataset, as outlined in 
Table  5. It is notable that the probability of a diagnosis 
of influenza-like diseases is nearly equivalent to the prob-
ability when the patient is diagnosed with hypertension. 
Furthermore, all patients with hypertension also had 
at least a record of influenza-like disease diagnosis. We 
chose α = P(B|A) and β = P(A|B).

Also, we set k = 2 and time T = 1 year. These settings 
are referred to in [26, 30].

Baselines
For the baselines, we explore various learning modules 
and compare them to our proposed al-BERT model.

Overall model
In this experiment, we compare the following disease 
prediction models.

• original Med‑BERT [1]: Apply BERT by preprocess-
ing medical records to sentence-like structures. Med-
ical records include disease descriptions, drugs, and 
procedures. These records are arranged by time and 
medical priority, then consider codes as words and 
arranged records as sentences.

Table 3 ICD‑9 codes and their name of diseases refer to 
influenza‑like disease

ICD‑9 Disease name

079.89 Other specified viral infection

079.99 Unspecified viral infection

460 Acute nasopharyngitis [common cold]

462 Acute pharyngitis

464.00 Acute laryngitis

464.10 Acute tracheitis

464.20 Acute laryngotracheitis

465.0 Acute laryngopharyngitis

465.8 Acute upper respiratory infections of other multiple sites

465.9 Acute upper respiratory infections of unspecified site

466.0 Acute bronchitis

466.11 Acute bronchiolitis due to respiratory syncytial virus (RSV)

466.19 Acute bronchiolitis due to other infectious organisms

478.9 Other and unspecified diseases of upper respiratory tract

480.0 Pneumonia due to adenovirus

480.1 Pneumonia due to respiratory syncytial virus

480.2 Pneumonia due to parainfluenza virus

480.8 Pneumonia due to other virus not elsewhere classified

480.9 Viral pneumonia, unspecified

484.8 Pneumonia in other infectious diseases classified elsewhere

485 Bronchopneumonia, organism unspecified

486 Pneumonia, organism unspecified

487.0 Influenza with pneumonia

487.1 Influenza with other respiratory manifestations

487.8 Influenza with other manifestations

490 Bronchitis, not specified as acute or chronic

780.6 Fever and other physiologic disturbances of temperature 
regulation

784.1 Throat pain

786.2 Swelling, mass, or lump in head and neck
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• retain‑BERT: In this scenario, we utilize RETAIN as 
a base recurrent neural network preceding BERT. 
Similar to our learning module, we utilize RETAIN to 
extract weights for each disease after the RNN layer, 
filtering the diseases based on the weights it learns.

• Random‑BERT: Randomly delete the located disease 
(flu) in the diagnose sequence. Each located disease 
has a 30% chance of been deleted. Our goal for this 
pattern is to compare the performance of training 
with the original disease sequence and training with 
a shorter disease sequence. We take 30% as filter 
chances according to the ratio of influenza-like dis-
eases and injuries in the dataset.

Fig. 7 Top 5 diseases appearing in our dataset. Note that Acute upper respiratory infections, Acute bronchitis and Acute nasopharyngitis [common 
cold] are influenza‑like diseases

Table 4 ICD‑9 codes and their name of the trigger diseases and 
target diseases we selected

ICD‑9 Disease name

401.9 Unspecified essential hypertension

402.9 Unspecified hypertensive heart disease

414.9 Chronic ischemic heart disease, unspecified

250.0 Diabetes mellitus without mention of complication

413.9 Other and unspecified angina pectoris

272.4 Other and unspecified hyperlipidemia

401.1 Benign essential hypertension

Fig. 8 The x‑axis represents the time intervals between occurrences of diseases within the dataset. Meanwhile, the y‑axis displays statistical 
measures, offering insights into the occurrence patterns of diseases. Specifically, the statistical results pertain to diseases categorized 
as “influenza‑like diseases”, including two specific examples in the dataset: 465.9 (Acute upper respiratory infections of unspecified site) and 466.0 
(Acute bronchitis)
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Ablation study: without BERT
We compare our attention learning (al) with LSTM [31] 
and RETAIN [15] without connecting to BERT.

• LSTM: LSTM is employed to determine whether to 
filter each record. LSTM’s ability to capture sequen-
tial dependencies makes it suitable for learning the 
relevance of individual records in the context of the 
overall sequence.

• RETAIN w/o BERT: RETAIN is a reverse time atten-
tion model using two RNN layers. These RNN 
layers are for visit-level attention and variable-
level attention. Using the generated attentions, we 
obtain a context vector c which represents a weight 
of visits. We extract vector c as weights to adjust 
the importance of each visit.

• Double attention (Ours) w/o BERT: We execute all 
the blocks before the extraction of diseases. Spe-
cifically, our model comprises two layers of atten-

Fig. 9 The x‑axis indicates the intervals in days between instances of the same disease, while the y‑axis illustrates statistical ratios or measures. The 
figure on the left‑hand side displays the day interval statistical results specifically for disease code 401.9 (hypertension). The middle figure represents 
the results for all diseases within the target set, while the one on the right‑hand side shows the statistical outcomes for a specific example 
within the target set, specifically disease code 250.0

Fig. 10 The chart on the left‑hand side depicts the distribution of visit lengths, while the chart on the right‑hand side illustrates the distribution 
of disease sequences in our training and testing datasets

Table 5 Set A comprises patients diagnosed with influenza‑
like disease, while set B consists of patients diagnosed with 
hypertension

Set Probability

A 0.2053

B 0.9741

A | B 0.2107

B | A 1
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tion: the initial layer operates in parallel, learning 
the significance of the entire sequence and selected 
subsequences, while the second layer processes the 
overall combined sequence from the previous layer.

Metrics
To measure the prediction quality, we use accuracy, 
precision, recall (sensitivity), f1 and ROC-AUC score. 
Recall is regarded as the most important for medi-
cal studies in the above-mentioned metric, since high 
recall means missing fewer positive results [32].

Experiment result
Overall model
For the BERT-based models, we compare their qual-
ity in masked language model tasks and next sentence 
prediction tasks. Table  6 shows the masked language 
model and next sentence prediction accuracy. We 
extend the result in the experiment for the learning 
module part. During the fine-tuning stage, patients 
who had been diagnosed with the trigger disease 401.9 
(Hypertension) were selected, and a [SEP] token was 
inserted afterwards to determine if any of the diseases 
in the target disease set were diagnosed. A total of 
2,691 patients were selected, and the maximum disease 
sequence length shown in Table 6 was set to 75.

The rationale behind selecting a disease length of 
75 is rooted in practical considerations. This choice is 
derived from the median length of a patient’s records in 
a year, which is 25, with each record containing a maxi-
mum of 3 diseases. Flattening these records results in a 

length of 75. This selection strikes a balance by captur-
ing sufficient information while avoiding excessive zero 
padding during BERT model training. However, for a 
comprehensive evaluation of the model’s performance, 
we also compared results using a longer disease length 
of 285, which is 95 records flattened by 3 diseases. 
This length represents the 99th percentile of the long-
est patient records across all data in the NHI-CD-R301 
dataset.

Table 7 presents the comparison of masked language 
model performance using retain-BERT with different 
disease sequence lengths. These results indicate that 
our attention-based learning module efficiently cap-
tures essential information for understanding a disease, 
leading to improved performance compared to retain-
BERT. However, al-BERT encountered challenges in 
the next sentence prediction task. We attribute this to 
a defect in the learning module, where target diseases 
have a higher likelihood of being filtered out in longer 
sequences, thereby influencing the decision-making 
process of al-BERT.

Notice that in both Tables 6 and 7, our model outper-
forms the original Med-BERT in the masked language 

Table 6 Result of each method concatenating with our pretrained BERT. MLM stands for masked language model and NSP stands 
for next sentence prediction. In this table, the input disease sequence length is set to 75. The first five metric (AUC‑ROC, accuracy, 
precision, recall, F1) represent the task of predicting the appearence of the target disease

The bold case represents the best result under a single metric

Model AUC‑ROC Accuracy Precision Recall f1 MLM NSP

Med‑BERT 0.9282 0.8591 0.8348 0.6329 0.7139 0.5375 0.8650

Random‑BERT 0.9228 0.8523 0.7985 0.5894 0.6893 0.5419 0.7925

RETAIN‑BERT 0.8508 0.7866 0.6781 0.6812 0.6395 0.5634 0.7975

al‑BERT 0.9383 0.8725 0.8450 0.7874 0.7743 0.5626 0.8675

Table 7 The masked language model and next sentence prediction result in NHI‑CD‑R301 for disease sequence length 285

Model AUC‑ROC Accuracy Precision Recall F1 MLM NSP

retain‑BERT 0.6789 0.6176 0.6197 0.9022 0.6933 0.4669 0.9225

al‑BERT 0.7889 0.7056 0.7489 0.7597 0.7109 0.7767 0.8950

Table 8 Comparing different learning modules

The bold case represents the best result under a single metric

Module AUC‑ROC Accuracy Precision Recall f1

LSTM 0.8018 0.7409 0.5389 0.4686 0.5013

RETAIN 0.9080 0.8376 0.7979 0.5652 0.6592

ours(al) 0.9181 0.8550 0.8134 0.7585 0.7441
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task. Particularly, the combination of random selec-
tion and Med-BERT achieves the highest perfor-
mance, while the original Med-BERT, which does not 
filter out any diseases, achieves only 38.15% accuracy. 
This observation suggests that feeding shorter disease 
sequences into the BERT-based model enables it to per-
form better in masked language tasks by reducing the 
number of decisions that need to be made.

Ablation study
Further, we compare the prediction results without the 
BERT module. Table 8 shows the result of different meth-
ods to capture essential diseases. In this experiment, we 
pretrained the BERT model by using NHI-CD-R301 data.

Our method achieved the highest performance among 
the listed methods, with an accuracy of 0.8550, AUC-
ROC of 0.9181, precision 0.8134, recall 0.7585 and f1 
score of 0.7441. Based on these results, it appears that 
our attention learning module outperforms the other 
methods in terms of these metrics. Moreover, domain 

experts claim the importance in recall value; our recall 
score is significantly higher than that of other methods.

Table 9 provides a comparison of non-BERT-based dis-
ease prediction models, including LSTM, RETAIN, and a 
part of our proposed model (referred to as al, for atten-
tion learning). The experiment was conducted using the 
MIMIC-III dataset.

In terms of performance metrics, our attention learn-
ing outperforms both the LSTM and RETAIN models 
in terms of AUC-ROC, accuracy, precision, recall, and 
F1 score. Specifically, our attention learning method 
achieved AUC-ROC of 0.9621, demonstrating its ability 
to capture disease patterns. It also achieved accuracy 
of 0.9280, demonstrating its ability to correctly classify 
disease cases. Moreover, our model achieved high pre-
cision (0.9448) and recall (0.9769), indicating its capa-
bility to accurately identify true positives and minimize 
false negatives.

Case study
This case study demonstrates the application of our al-
BERT model to predict the likelihood of a patient devel-
oping diabetes by visualizing a truncated sequence of 
EMR data using bertviz.We visualize our results using 
bertviz [33]. Since the original experiment of al-BERT 
had a sequence length of 75, which would be too long 
for visualization comprehension, we have captured a 
subsequence of length 15 to illustrate an example here. 
Figure  11 illustrates an example to use next sentence 

Table 9 Comparison of methods without BERT. We use MIMIC‑III 
in this experiment

The bold case represents the best result under a single metric

Model AUC‑ROC Accuracy Precision Recall F1

LSTM 0.9247 0.8918 0.8754 0.9701 0.9204

RETAIN 0.9505 0.8826 0.9371 0.8846 0.8812

al (ours) 0.9621 0.9280 0.9448 0.9769 0.9304

Fig. 11 This figure shows the visualization results for a patient predicted to develop 2500 (diabetes) in the future. Notably, focusing on diseases 
after [SEP], some diseases exhibit strong connections (indicated by deeper color). Specifically, in layer 3, the connection between 4019 and 2500 
appears stronger than with other diseases after [SEP]



Page 18 of 19Tseng et al. BMC Medical Informatics and Decision Making          (2024) 24:127 

prediction task of al-BERT to predict whether the 
patient will develop diabetes (2500) in the future. In the 
left of Fig. 11, we display the full dependency connec-
tions between their records and select 4019 (hyperten-
sion) to highlight its significance for our prediction.

We can see that the second occurrence of 4019 has 
a strong connection with some diseases after the [SEP] 
token, especially with 2500 on layer 3. In this case, these 
two disease sequence are likely to be the next sequence, 
therefore we predict the label as 1, which means this 
patients are more likely to have 2500 in the future.

Conclusion
We proposed a model, al-BERT, a BERT-based model for 
disease prediction that incorporates domain knowledge, 
such as comorbidity and the distance between diseases. 
Our model was designed to address the disease prediction 
problem by applying a semi-supervised attention learn-
ing method and BERT. It learns from a patient’s diagnosis 
records, undergoing preprocessing via bidirectional RNN 
to comprehend their characteristics. Concurrently, a par-
allel reverse RNN aids in identifying and capturing noise 
diseases. The resulting information is then combined and 
processed through a simple RNN once more, extract-
ing a subsequence that best represents the patient’s more 
significant medical history. After extracting this subse-
quence, it is considered as sentences, and the BERT model 
is trained using masked language modeling and next sen-
tence prediction tasks. Through experiments and evalua-
tions on real-world datasets, our model has demonstrated 
improved performance compared to other baselines. The 
combination of our attention learning module and pre-
trained BERT has outstanding results in accuracy, AUC-
ROC, and F1 scores in capturing essential diseases and 
predicting future diseases.

Since the latest datasets are based on ICD-10, we also 
aim to conduct experiments using ICD-10 in the future. 
ICD-10 and ICD-9 are constructed in the same manner 
[34] but provide more detailed information, which could 
be more closely aligned with a language representation. 
Therefore, we anticipate that our work will yield impres-
sive results.

al-BERT effectively integrates domain knowledge, 
applies attention mechanisms, and leverages the power 
of pretrained BERT to improve disease prediction. The 
model shows promise in capturing essential information 
from disease records, and can be applied to real-world 
scenarios for predicting future diseases. The increasing 
popularity of large language models (LLMs) opens up 
possibilities for applying more information within Elec-
tronic Medical Records (EMRs); these potentials remain 
a subject for future work.
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