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Abstract 

Background Predicting whether Carbapenem-Resistant Gram-Negative Bacterial (CRGNB) cause bloodstream 
infection when giving advice may guide the use of antibiotics because it takes 2–5 days conventionally to return 
the results from doctor’s order.

Methods It is a regional multi-center retrospective study in which patients with suspected bloodstream infections 
were divided into a positive and negative culture group. According to the positive results, patients were divided 
into the CRGNB group and other groups. We used the machine learning algorithm to predict whether the blood 
culture was positive and whether the pathogen was CRGNB once giving the order of blood culture.

Results There were 952 patients with positive blood cultures, 418 patients in the CRGNB group, 534 in the non-
CRGNB group, and 1422 with negative blood cultures. Mechanical ventilation, invasive catheterization, and car-
bapenem use history were the main high-risk factors for CRGNB bloodstream infection. The random forest model 
has the best prediction ability, with AUROC being 0.86, followed by the XGBoost prediction model in bloodstream 
infection prediction. In the CRGNB prediction model analysis, the SVM and random forest model have higher area 
under the receiver operating characteristic curves, which are 0.88 and 0.87, respectively.

Conclusions The machine learning algorithm can accurately predict the occurrence of ICU-acquired bloodstream 
infection and identify whether CRGNB causes it once giving the order of blood culture.
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Background
Among the infections of severe patients, the mortality 
of bloodstream infections is the highest [1]. Recently, 
with the prevalence of multiple drug-resistant bacteria 
(MDR) in China, bloodstream infections caused by MDR 
are becoming more common in critically ill patients [2]. 
Common clinical MDRs include carbapenem-resistant 
Enterobacteriaceae (CRE), carbapenem-resistant Acine-
tobacter baumannii (CRAB), and carbapenem-resistant 
Pseudomonas aeruginosa (CRPA), which has been on the 
list of priority pathogens by the World Health Organiza-
tion [3]. Today, the most common and dangerous MDR 
in China is Carbapenem-resistant gram-negative bacilli 
(CRGNB). Empirical antibiotic therapy becomes very 
difficult once MDR must be considered due to different 
drug resistance mechanisms, local epidemiology, site of 
infection, immune status, history of antimicrobial expo-
sure, and MDR colonization records [2].

Blood culture and susceptibility tests, the gold standard 
of bloodstream infection, guide the empirical antibiotic 
regimen to targeted use [1]. However, the blood culture 
needs 1–3 days from sampling to results, depending on 
the bacterial load in the blood, making it relatively hys-
teretic to diagnose bloodstream infections [4]. Addition-
ally, this duration may lead to sepsis progression to septic 
shock and even death which cannot meet the demand 
of time-racing rescue of sepsis [5]. If there are artificial 
intelligence predictive tools to remind the incidence of 
drug-resistant bacteria bloodstream infection when doc-
tors make the order of blood culture, it may help clini-
cians to determine the antibiotic regimen, which may be 
helpful to the control of bloodstream infection.

The use of machine learning to predict bloodstream 
infection of MDR provides a possible solution from 
another point of view, which is more meaningful for 
guiding the use of antibiotics. Application of machine 
learning in MDR-GNB is increasing, including predict-
ing the risk of MDR-GNB infection, predicting whether 
known infections originate from MDR-GNB, and guid-
ing antibiotic management and prevention and control 
of MDR-GNB. According to current research, predict-
ing the occurrence of bloodstream infection is feasible 
[6–10]. Michael Roimiuse and his colleagues used the 
MIMIC and RHCC databases to predict acquired blood-
stream infection in patients with suspected ICU infec-
tion using the XGBoost prediction model. The area under 
the receiver operating characteristic (AUROC) of two 
centers are 0.89 ± 0.01 and 0.92 ± 0.02, respectively [10]. 
Four other centers built machine-learning prediction 
models of bloodstream infection through their central 
databases, and the AUROC of models varied from 0.77 
to 0.82 [6, 8, 9, 11]. No studies predict the occurrence of 
MDR bloodstream infection, and the guidance for the 

current situation of MDR bloodstream infection is lim-
ited. As the most common and virulent type of MDR, 
CRGNB are the focus of our study. The antibiotic regi-
men is determined according to the patient’s state, the 
degree of sepsis shock, the type of bacteria prevalent in 
the ward once doctors suspect bloodstream infection, 
and our artificial intelligence can provide some advices 
for antibiotic use early. Normally, the most commonly 
used antibiotics were broad-spectrum antibiotics rather 
than these treat drug-resistant bacteria, including colis-
tin, ceftazidime-avibactam, and tigecycline. This study 
focuses on predicting whether the pathogenic bacteria of 
bloodstream infection are MDR bacteria using machine 
learning algorithms.

Methods
Study characteristics
The database in our study is from the general intensive 
care unit (ICU) database (SHZJU-ICU) of the second 
affiliated hospital of the Zhejiang University School of 
Medicine, a large academic teaching hospital in southeast 
China with 3800 beds in four districts of Hangzhou. Gen-
eral ICU has set up four wards in three of these districts, 
with 26 beds, 40 beds, and 10 beds to treat critically ill 
patients independently. Data from the three wards were 
shared in 2021. A total of approximately 18000 criti-
cally ill patients were included in this database, included 
demographics, vital signs, clinical examination, medica-
tion orders, clinical diagnosis, and medical documents.

It was a regional multi-center retrospective study that 
included all critically ill patients with blood cultures from 
2015.01 to 2021.12. In this study, each blood culture is 
taken as a time point, and the patient data before the time 
point are collected to form a complete data. The patients 
included in the study collected information consisting 
of demography, diagnosis and complications, vital signs, 
and laboratory indicators within one day before blood 
culture sampling. The antibiotic use records and clinical 
status data were collected two weeks before sampling. 
Any positive blood culture was marked as a positive 
patient during hospitalization, but removed the repetitive 
data with multiple blood culture and only remained the 
first positive data regardless of whether the subsequent 
results are positive or not. Only the first blood culture 
data entry was left in patients with repeated negative 
blood culture. This study divided patients with suspected 
bloodstream infections into culture-positive and negative 
groups. According to the positive results, patients were 
divided into the CRGNB group and other groups. The 
machine learning algorithm was used to predict whether 
the blood culture was positive and whether the patho-
gen was CRGNB. Figure  1 shows the flow chart. This 
study has passed the ethics approval of second affiliated 
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Fig. 1 The logical flow of model prediction and flow chart of our study. CR-GNB Carbapenem-resistant gram-negative bacteria, BSI Bloodstream 
infection, BC Blood culture
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Hospital of Zhejiang University school of medicine, and 
the approval number is IRB-2016–1511.

Variable definition
Inclusion and exclusion criteria: all patients admitted to 
the ICU were included in our study. Exclusion criteria: 
patients with a hospital stay of fewer than 48  h, Blood 
culture results taken within 48  h after admission into 
ICU. We retained the first positive blood culture regard-
less of whether the subsequent results are positive or not 
and removed others repeatedly. The history of all antibi-
otic use refers to the records of antibiotics used within 
two weeks; all laboratory data are taken from the past 
24  h of blood culture sampling. If there are duplicate 
data, take the average. Invasive catheterization defined 
as the catheterization of invading blood vessels, includ-
ing central venous catheter, dialysis catheter, catheter of 
extracorporeal membrane oxygenation, Swan-Ganz, and 
Pulse index Continuous Cardiac Output. The carbapen-
ems used in our center includes meropenem, imipenem-
cilastatin sodium hydrate, ertapenem, biapenem.

Bacterial detection
Determining and interpreting the minimum inhibitory 
concentration (MIC) were consistent with the Clini-
cal and Laboratory Standards Institute (CLSI) stand-
ards [12, 13]. Carbapenem resistance was defined as 
reduced susceptibility with a minimum inhibitory con-
centration of ≥ 2  mg/L for imipenem or meropenem. 
The definition of tigecycline MIC follows the criteria of 
the European Committee on Antimicrobial Susceptibil-
ity Testing (EUCAST), MIC > 2  mg/L [14]. A laboratory 
physician conducted the drug susceptibility test with 
analysis instruments (VITEK2 AST-GN16 France). The 
broth dilution method determined the strains with medi-
ated sensitivity to tigecycline. We use the blood culture 
instrument and media system Provided by bioMerieux 
BacT/ALERT® 3D with Mycobacteria Indication.

Statistical methods
We use R v.3.6.3 (R Core Team, 2020) and RStudio 
v.1.4.1029 (RStudio Team, 2020) with related packages 
to accomplish our data analysis [15]. We use median 
and quartile spacing presentation for numerical vari-
ables with non-normal distribution and use mean and 
standard deviation for normal distribution data. Extreme 
values and outliers will be deleted. Then, variables with 
missing values exceeding 40% were excluded, and cases 
with missing variables exceeding 50% were removed. 
Variables with missing values ranging from 10 to 40% 
were addressed through multiple imputations, while 
those with less than 10% missing data were filled via 
simple interpolation [16, 17]. Sensitivity analysis is used 

to evaluate the stability of multiple interpolation. Mul-
tivariate logistic regression and three machine learn-
ing algorithms, decision tree, random forest, SVM, and 
XGBoost, were selected to establish models with cor-
responding R packages such as "glm," "rpart," "random-
Forest," "xgboost," and "rattle" [18, 19]. All samples were 
grouped into a 70% training set, a 15% validation set, and 
a 15% test set, which was is a relatively common propor-
tion of distribution [8, 20, 21]. The decision tree model 
produces different branches by calculating the character-
istics of independent variables and divides the data into 
subsets with similar features to achieve classification [19]. 
Other algorithms are all classification algorithms based 
on the decision tree. Random forest is an independ-
ent but comprehensive decision of hundreds of deci-
sion trees with higher accuracy than the decision tree. 
XGBoost, an improved version of the Gradient Boosting 
algorithm, builds numerous interrelated decision trees 
and is highly efficient and flexible [18]. Group compari-
sons were assessed using an independent sample T-test, 
a chi-square test, and multivariate logistic regression. 
Multivariate logistic regression used the step-by-step 
decreasing method to adjust the parameters to reduce 
the variable collinearity. The odds ratio (OR) and 95% 
confidence interval (CI) were calculated to evaluate the 
association strength. Statistical significance was assigned 
to a P value of less than 0.05. The evaluation parameters 
included sensitivity, specificity, positive predictive value, 
negative predictive value, and AUROC curves. We evalu-
ate the bias of the prediction model through PROBAST 
framework and write the prediction model through the 
TRIPOD scheme to ensure the structural integrity of the 
research [22, 23].

Results
Approximately 18,000 patients were included in the 
SHZJU-ICU database, of which 8652 effective blood cul-
tures, and 2375 patients were considered as bloodstream 
infection during hospitalization. According to the exclu-
sion criteria, 952 patients with positive blood cultures 
and 1422 negative patients were included (Fig. 1).

There was no statistical difference in gender and age 
between the two groups. The incidence of bloodstream 
infection was higher in patients with infectious dis-
eases (19.9% vs. 7.4%, P < 0.001, OR = 3.10) and internal 
diseases (6.2% vs. 2.7%, P < 0.001, OR = 2.41), and there 
was no significant difference in other diseases, includ-
ing trauma, cerebrovascular accident, heart disease, 
and surgical disease. The positive rate of blood culture 
was higher in patients with multiple organ dysfunc-
tion syndrome, including acute kidney injury (26.1% 
vs. 16.0%, P < 0.001, OR = 1.85) and respiratory failure 
with mechanical ventilation (72.1% vs. 57.5%, P < 0.001, 
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OR = 1.91). Immunosuppressant use (48.8% vs. 28.1%, 
P < 0.001, OR = 2.44) and a history of multiple antibiotics 
are also high-risk factors for bloodstream infection. All 
laboratory markers before blood culture are significant 
and specific high-risk factors can be found in Table 1. The 
hospitalization time and the stay in the ICU of patients 
with bloodstream infections were more prolonged than 
that of negative patients. Meanwhile, the mortality was 
higher. Multivariate analysis showed that the heart rate 

(P < 0.001, OR = 1.98), temperature (P < 0.001, OR = 1.92), 
procalcitonin (P < 0.001, OR = 1.97), and lactic acid 
(P = 0.013, OR = 1.22) before blood culture, a carbap-
enem (P < 0.001, OR = 2.89) and glycopeptide use history 
(P < 0.001, OR = 1.98) were the high factors of blood-
stream infection (Table  2). The effectiveness of predic-
tion model shows that the random forest model has the 
best prediction ability, with AUROC being 0.86, followed 
by the XGBoost prediction model. The best prediction 

Table 1 Baseline characteristic and variables of bloodstream infection in ICU

Variables Culture-positive group; 
N = 952

Culture-negative group; 
N = 1422

P OR(95%CI)

Age, yr, (IQR) 59 [41–76] 59 [42–75] 0.44

Heart rate, (IQR) 110 [96–132] 98 [74–120] < 0.001

Systolic pressure, mmHg, (IQR) 111 [93–130] 115 [96–135] < 0.001

Diastolic pressure, mmHg, (IQR) 60 [50–76] 60 [46–74] 0.09

Mean arterial pressure, mmHg, (IQR) 77 [60–94] 79 [62–92] 0.002

Respiratory rate, times, (IQR) 23 [15-26] 22 [18-28] < 0.001

Gender (male) 632 (66.4%) 939 (66.0%) 0.859 1.01 (0.91–1.12)

Fever 438 (46.0%) 439 (30.9%) < 0.001 1.90 (1.61–2.26)

Primary disease (%)

 Infections 189 (19.9%) 105 (7.4%) < 0.001 3.10 (2.41–4.01)

 Trauma 204 (21.4%) 351 (24.7%) 0.066 1.12 (0.99–1.26)

 Cardio-cerebrovascular accident 129 (13.6%) 208 (14.6%) 0.46 1.05 (0.91–1.22)

 Heart disease 42 (4.4%) 62 (4.4%) 0.952 0.99 (0.78–1.26)

 Postoperative diseases 55 (5.8%) 118 (8.3%) 0.021 1.28 (1.02–1.60)

 Internal medicine diseases 59 (6.2%) 38 (2.7%) < 0.001 2.41 (1.58–3.65)

 Malignant tumor 115 (12.1%) 145 (10.2%) 0.15 1.21 (0.93–1.57)

Clinical characteristics (%)

 Leukocytosis 663 (69.6%) 834 (58.6%)  < 0.001 1.61 (1.35–1.92)

 Thrombopenia 168 (17.6%) 96 (6.8%)  < 0.001 2.96 (2.26–3.86)

 Metabolic acidosis 73 (7.7%) 30 (2.1%)  < 0.001 2.32 (1.56–3.54)

 Mechanical ventilation 686 (72.1%) 817 (57.5%)  < 0.001 1.91 (1.60–2.28)

 Acute kidney injury 248 (26.1%) 228 (16.0%)  < 0.001 1.85 (1.51–2.26)

 Septic shock 280 (29.4%) 335 (23.6%) 0.001 1.35 (1.12–1.63)

 History of glucocorticoids 400 (42.0%) 284 (20.0%)  < 0.001 2.90 (2.42–3.48)

 Immunosuppression 465 (48.8%) 400 (28.1%)  < 0.001 2.44 (2.06–2.90)

 Emergency admission 583 (61.2%) 778 (54.7%) 0.002 1.30 (1.11–1.55)

 Invasive catheterization 616 (64.7%) 731 (51.4%)  < 0.001 1.73 (1.46–2.05)

 Operation history 516 (54.2%) 675 (47.5%)  < 0.001 0.338 (0.28–0.40)

 History of quinolones 81 (8.5%) 43 (3.0%)  < 0.001 2.98 (2.04–4.36)

 History of carbapenems 479 (50.3%) 221 (15.5%)  < 0.001 5.50 (4.54–6.67)

 History of cephalosporins 454 (47.7%) 456 (32.1%)  < 0.001 1.93 (1.63–2.29)

Antibiotic regimens (%)

 Carbapenems 274 (28.8%) 326 (22.9%) 0.001 1.35 (1.13–1.64)

 Tigecycline 200 (21.0%) 69 (4.9%)  < 0.001 5.21 (3.91–6.95)

 Colistin or polymyxin 87 (9.1%) 23 (1.6%)  < 0.001 6.12 (3.83–9.76)

 Death (%) 223 (23.4%) 98 (6.9%)  < 0.001 1.95 (1.78–2.15)

 LOS of infection, days, (IQR) 6.0 [1-26] 5.0 [1-20]  < 0.001

 Length of ICU stay, days, (IQR) 14.7 [3.0–41.3] 9.0 [2.7–28.0]  < 0.001



Page 6 of 11Liang et al. BMC Medical Informatics and Decision Making          (2024) 24:123 

model accuracy is 77.7%, the highest specificity is 83.6%, 
and the sensitivity is poor, with a maximum of 70.5% 
(Table 3) (Fig. 2).

Among patients with positive blood cultures, there 
were 418 patients in the CRGNB group and 534 in the 
non-CRGNB group. Among the 418 cases of CRGNB 
bloodstream infection, CRKP and CRAB accounted for 
168 and 187 cases respectively, with CRPA of 54 cases, 
CRE of 9 cases (supplement Table  1). The incidence of 
CRGNB bloodstream infection in trauma patients was 
higher, and there was no statistical difference in other 
diseases. Mechanical ventilation, history of glucocorti-
coid use, immunosuppressive condition, invasive cath-
eterization, quinolone, carbapenem, and cephalosporin 

Table 2 Parameters in the multivariable logistic regression 
model of bloodstream infection in ICU

Variables P OR (95%CI)

Heart rate < 0.001 1.988 (1.783–2.394)

Temperature < 0.001 1.918 (1.733–2.214)

Lymphocyte count 0.049 1.25 (1.001–1.562)

Procalcitonin < 0.001 1.976 (1.269–2.684)

Lactic acid 0.013 1.226 (1.071–1.584)

Total bilirubin 0.007 1.596 (1.293–1.899)

Albumin < 0.001 1.057 (1.037–1.078)

Metabolic acidosis 0.036 1.434 (1.043–1.745)

History of carbapenems < 0.001 2.899 (2.271–3.702)

History of glucocorticoids < 0.001 2.253 (1.657–3.061)

Table 3 Test set evaluation result of machine learning and multiple logistic regression model for bloodstream infection and CRGNB 
bacteremia

PPV Positive likelihood ratio, NPV Negative predictive value, AUROC Area under the receiver operating characteristic

Model AUROC Accuracy Sensitivity Specificity PPV NPV F1

Bloodstream infection model

 Logistic regression 0.81 74.3 65.2 80.1 67.4 78.5 0.66

 Decision Tree 0.77 76.0 64.1 83.6 71.1 78.7 0.67

 Random Forest 0.86 77.7 69.6 82.9 71.9 81.2 0.71

 SVM 0.83 76.5 66.3 82.8 70.9 79.6 0.69

 XGBoost 0.85 76.4 70.6 80.1 69.1 81.2 0.69

CRGNB bacteremia model

 Logistic regression 0.86 74.0 87.0 62.0 67.8 83.8 0.76

 Decision Tree 0.69 70.8 86.9 56.0 64.5 82.3 0.74

 Random Forest 0.87 70.8 89.1 54.0 64.0 84.4 0.75

 SVM 0.88 75.0 87.0 64.0 69.0 84.2 0.77

 XGBoost 0.80 70.8 79.5 58.0 65.0 80.5 0.73

Fig. 2 AUROC of the test set for four machine learning algorithm and multivariable logistic regression model in bloodstream prediction model 
and CRGNB bloodstream prediction model
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use history are high-risk factors for CRGNB bloodstream 
infection (Table  4). In multivariate analysis, the main 
high-risk factors were mechanical ventilation, invasive 
catheterization, and carbapenem use history (Table  5). 
Sankey Diagram can visually show the relationship 
between different species of CRGNB and high-risk fac-
tors in Fig. 3.

In the CRGNB prediction model analysis, the SVM 
and random forest model have higher AUROC curves, 
which are 0.88 and 0.87, respectively (Table  3). In the 
model performance, the sensitivity is significantly 
improved compared to the blood flow infection predic-
tion model, and the sensitivity of random forest model 
is 89.1. The SVM model has the highest overall accu-
racy, reaching 75%.

Discussion
This study mainly presents the following clinical scenario: 
when clinicians suspect bloodstream infection and make 
blood culture orders, artificial intelligence predicts the 
positive rate of blood culture and the probability caused 
by CRGNB culture result based on previous data. There 
are some clinical studies on the predictive model of 
positive blood culture, but no research of CRGNB. This 
study shows that the artificial intelligence algorithm has 
the potential to predict the occurrence of nosocomial 
CRGNB bloodstream infection accurately. Limited by the 
longer blood culture cycle and fewer choices of antibiot-
ics, it is necessary to predict CRGNB bloodstream infec-
tion earlier so that the empirical antimicrobial regimen 
can be transformed into the target antimicrobial regimen 

Table 4 Baseline characteristic and variables of CRGNB Bacteremia in ICU

There are 15 variables are included in Supplemental Table 1 due to the limited space

IQR Interquartile range

Variables CRGNB N = 418 Non-CRGNB N = 534 P OR(95%CI)

Age, yr, (IQR) 60 [43–78] 60 [43–77] 0.76

Heart rate, (IQR) 112 [88–132] 109 [87–130] 0.075

Systolic pressure, mmHg, (IQR) 111 [87–135] 111 [89–135] 0.771

Diastolic pressure, mmHg, (IQR) 60 [45–77] 60 [45–73] 0.795

Mean arterial pressure, mmHg, (IQR) 77 [59–94] 76 [60–94] 0.769

Respiratory rate, times, (IQR) 24 [18-31] 23 [18-28] 0.028

Gender (male) 258 (61.7%) 374 (70.1%) 0.007 0.69 (0.53–0.90)

Fever 209 (50.0%) 229 (42.9%) 0.03 1.33 (1.03–1.72)

Primary disease (%)

 Infections 91 (21.7%) 98 (18.3%) 0.18 1.23 (0.90–1.70)

 Trauma 108 (25.8%) 96 (17.9%) 0.003 1.59 (1.16–2.17)

 Cardio-cerebrovascular accident 59 (14.1%) 70 (13.1%) 0.653 1.09 (0.75–1.58)

 Heart disease 21 (5.0%) 21 (3.9%) 0.416 1.29 (0.69–2.39)

 Postoperative diseases 25 (6.0%) 30 (5.6%) 0.810 1.07 (0.62–1.85)

 Internal medicine diseases 26 (6.2%) 33 (6.1%) 0.980 1.007 (0.59–1.72)

 Malignant tumor 51 (12.2%) 64 (11.9%) 0.919 1.021 (0.68–1.51)

Clinical characteristics (%)

 Leukocytosis 291 (69.6%) 372 (69.7%) 0.988 0.998 (0.75–1.31)

 Thrombopenia 89 (21.2%) 79 (14.8%) 0.09 1.55 (1.11–2.18)

 Metabolic acidosis 42 (10.0%) 31 (5.8%) 0.015 1.81 (1.12–2.94)

 Mechanical ventilation 349 (83.5%) 337 (63.1%) < 0.001 2.95 (2.16–4.04)

 Acute kidney injury 114 (27.2%) 134 (25.1%) 0.447 1.11 (0.84–1.49)

 Septic shock 136 (32.5%) 144 (26.9%) 0.061 1.31 (0.98–1.73)

 History of glucocorticoids 213 (50.9%) 187 (35.0%) < 0.001 1.92 (1.42–2.50)

 Immunosuppression 245 (58.6%) 220 (41.2%) < 0.001 2.02 (1.55–2.62)

 Emergency admission 244 (58.3%) 339 (63.4%) 0.108 0.81 (0.62–1.05)

 Invasive catheterization 312 (74.6%) 304 (56.9%) < 0.001 2.23 (1.69–2.94)

 Operation history 236 (56.4%) 280 (52.4%) 0.216 1.17 (0.91–1.52)

 History of quinolones 51 (12.2%) 30 (5.62%) < 0.001 2.34(1.45–3.74)

 History of carbapenems 279 (66.7%) 200 (37.5%) < 0.001 3.35 (2.56–4.38)

 History of cephalosporins 232 (55.5%) 222 (41.6%) < 0.001 1.75 (1.35–2.27)
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more quickly and the use of unnecessary broad-spectrum 
antibiotics can be reduced [24].

In this study, the AUROC of our bloodstream infection 
prediction model was 0.86. It was similar to the previ-
ously published bloodstream infection prediction model, 
and the AUROC was between 0.82 and 0.926 [6–10]. The 
judgment of the outcome of the bloodstream infection 
prediction model is based on the results of blood cul-
ture, and this outcome index is very consistent with the 
construction of the binary machine learning algorithm 
which is better than traditional multivariate logistic 

model based on multi-dimensional data analysis. But the 
same problem with these studies is that blood culture 
is not reliable. Blood culture can be regarded as blood-
stream infection, but bloodstream infection is not neces-
sarily positive blood culture. Before blood culture breaks 
through its own defects, false negative is almost inevita-
ble. Although there are many blood culture results in our 
study, we only choose the results of the first sampling in 
patients. Follow-up blood culture may lead to misleading 
due to the use of various antibiotics. In addition, continu-
ous negative results may lead to a significant increase in 
negative samples, resulting in inadequate model fitting. 
These factors are often ignored in other studies, resulting 
in false high accuracy.

On this basis, the accuracy of predicting bloodstream 
infection caused by CRGNB was excellent, with an 
AUROC of 0.88. There are very few studies on this per-
spective. The researchers conducted a retrospective study 
of patients with hematologic diseases in a tertiary hospi-
tal in Barcelona. Typically, 3235 episodes of neutropenia 
and 180 infections (5.6%) were recorded in 349 patients. 
The machine learning algorithm predicted the incidence 
of MDR-GNB infection with an AUROC of 0.79 [25]. 

Table 5 Parameters in the multivariable logistic regression 
model of CRGNB Bacteremia in ICU

Variables P OR (95%CI)

C-reactive protein 0.025 1.28 (1.06–1.59)

prothrombin time 0.011 1.34 (1.11–1.48)

Trauma 0.002 1.78 (1.22–2.61)

Mechanical ventilation < 0.001 1.94 (1.35–2.81)

Invasive catheterization < 0.001 1.66 (1.22–2.27)

History of carbapenems < 0.001 2.84 (2.05–3.94)

Fig. 3 The relationship between different species of CRGNB and high-risk factors including mechanical ventilation, invasive catheterization, 
and carbapenem use history
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Our research has a more significant amount of data and a 
precise prediction result, which is of great significance in 
improving the accuracy of the prediction model.

For ICU patients suspected of bloodstream infection, 
the positive rate of blood culture in patients with severe 
sepsis before the use of antibiotics was 31.4% to 50.6% 
[26, 27]. The positive rate of blood culture was approxi-
mately 40%. A prospective study of patients in medical 
wards of 31 centers in Italy found that the incidence of 
MDR-GNB bloodstream infection was 48.2%. High-risk 
factors included advanced age, previous hospitaliza-
tion history, and history of antibiotic use [28]. It seems 
to confirm the current epidemic trend of drug-resistant 
bacteria that CRGNB accounts for nearly half of the 
patients with positive blood culture in our central, similar 
to the international epidemiological data. The isolation 
rate of CRGNB in hospital-acquired infections is gener-
ally high. Statistics worldwide show that the isolation 
rate of CRGNB in Southeast Asia varies from 26 to 65% 
[27]. Our data do not fully represent the epidemiological 
characteristic of CRGNB bloodstream infection in our 
center, which is related to the exclusion criteria of this 
study. We removed bloodstream infections from com-
munity sources as much as possible. At the same time, 
it is difficult to achieve no antibiotic exposure if blood-
stream infection occurs during hospitalization in the 
ICU, which reduces the detection rate of sensitive bacte-
ria and adds to the detection rate of MDR in the study. 
Therefore, the data of our center only show ICU-related 
CRGNB bloodstream infection to a certain extent. There 
were KPC-2 in 96.7% genotype of the CRKP through epi-
demic survey in Zhejiang, China. We did not carry out 
genotype testing for CRPA and CRAB, so we did not pre-
sent genotype in the article [29–31]. Our study provides a 
reference for nosocomial prevention and control, identi-
fies patients with high-risk drug-resistant bacteria infec-
tion and implements more accurate contact isolation and 
hand hygiene to reduce costs and increase efficiency [32]. 
The prediction model provides some preliminary refer-
ences for antibiotic management. With the increase of 
the amount of data and model optimization, the predic-
tion model can provide more convincing guidance and 
suggestions.

The accuracy of the bloodstream infection predic-
tion model and AUROC is not very high in our research. 
This may be related to the low positive rate of blood cul-
ture, and there are many false negative cases and false 
positive due to contaminations. Due to varying sampling 
times and early antibiotic exposure, many septic shock 
patients were considered as bloodstream infections but 
with negative blood cultures. These patients are classified 
as negative cases, increasing the uncertainty of predic-
tive model classification [33]. There are false positive and 

false negative, which is related to the level of hospitals, 
the timing of blood culture and the history of the use of 
antibiotics. Although there are next generation sequenc-
ing (NGS) and polymerase chain reaction (PCR) results 
as a supplement [34], the status of blood culture as a gold 
standard cannot be shaken in the short term. Whether we 
can include PCR or NGS results to enhance the diagnosis 
of bloodstream infection needs more literature support. 
With the continuous improvement of detection technol-
ogy, the diagnosis of bloodstream infection is more accu-
rate, and the prediction model will be more accurate. 
This study is a retrospective study of a single database; 
as a regional multi-center database, the data source is 
relatively simple, and the prediction model may have the 
risk of poor external adaptability. There are errors, biases 
and deficiencies in the clinical variables in the retrospec-
tive study. In particular, continuous variables, such as the 
recording of heart rate, temperature and blood pressure 
may lead to inaccurate data interpretation due to errors 
in analytical methods, which may affect the accuracy 
of model construction. It was a similar limitation in all 
research by the MIMIC database. Currently, the over-
all accuracy of artificial intelligence prediction model of 
CRGNB bloodstream infection is not very high, and the 
distance to guide the use of clinical antibiotics requires 
more scenario application practice, which must be con-
firmed by prospective and even randomized controlled 
trial research. At the same time, our model also has the 
problem of external validation, because the incidence of 
bloodstream infection is different in different MDR epi-
demic areas. Low and high epidemic areas of CRGNB 
may not be able to share the same model, which can only 
be achieved by adjusting the parameters or even modify-
ing the model framework or even reconstructing a model.

Conclusion
Machine learning algorithm can accurately predict the 
occurrence of ICU-acquired bloodstream infection and 
identify whether CRGNB causes it. This can provide more 
references for clinicians to make antibiotic decisions.
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