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Abstract 

Background Spatial molecular profiling depends on accurate cell segmentation. Identification and quantitation 
of individual cells in dense tissues, e.g. highly inflamed tissue caused by viral infection or immune reaction, remains 
a challenge.

Methods We first assess the performance of 18 deep learning-based cell segmentation models, either pre-trained 
or trained by us using two public image sets, on a set of immunofluorescence images stained with immune cell 
surface markers in skin tissue obtained during human herpes simplex virus (HSV) infection. We then further train eight 
of these models using up to 10,000+ training instances from the current image set. Finally, we seek to improve perfor-
mance by tuning parameters of the most successful method from the previous step.

Results The best model before fine-tuning achieves a mean Average Precision (mAP) of 0.516. Prediction perfor-
mance improves substantially after training. The best model is the cyto model from Cellpose. After training, it achieves 
an mAP of 0.694; with further parameter tuning, the mAP reaches 0.711.

Conclusion Selecting the best model among the existing approaches and further training the model with images 
of interest produce the most gain in prediction performance. The performance of the resulting model compares 
favorably to human performance. The imperfection of the final model performance can be attributed to the moder-
ate signal-to-noise ratio in the imageset.
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Introduction
A major task in imaging analysis is to accurately iden-
tify (or segment) individual cells within an image. While 
manual cell segmentation has often been conducted 

because it does not require extra computational tools 
and utilizes human expertise, it is not scalable and has 
low reproducibility. As an alternative, traditional auto-
mated cell segmentation has been researched for many 
years (e.g. [1] and references within). Moreover, recent 
advances in computer vision have spurred a new genera-
tion of state-of-the-art deep learning-based cell segmen-
tation models [2–12]. Among these deep learning-based 
models, three approaches stand out: Cellpose, DeepCell/
DeepDistance, and Mask R-CNN (Fig.  1). All three try 
to predict whether a pixel is inside or outside a cell, but 
an inside-outside map alone is not sufficient for cell seg-
mentation. These approaches differ in how they identify 
individual cells. Cellpose and DeepCell/DeepDistance 
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combine deep learning and traditional cell segmentation 
methods and are specifically designed for cell segmen-
tation. Cellpose [9, 10] models the horizontal and verti-
cal gradients of a topological map with a single smooth 
basin, which can be used to infer a cell through gradient 
tracking. DeepDistance [13] and DeepCell [11] formu-
late cell detection as a problem of finding cell centers 
and solve the problem through modeling distances to cell 
centroids and closest cell boundary. On the other hand, 
Mask R-CNN [14–18] is a general-purpose instance seg-
mentation method, which models a rectangular bound-
ing box around each object. It has been adapted to cell 
segmentation in e.g., CellSeg [12]. All three approaches 
have been demonstrated to be capable of achieving near 
human expert-level performance for images containing 
well-separated cells. However, high cell density and lim-
ited image resolution are known to impact model perfor-
mance [12, 19, 20].

Our goal is to assess and optimize the performance 
of deep learning-based cell segmentation models on a 
set of immunofluorescence images of herpes simplex 
virus (HSV)-infected skin lesion. HSV causes recurrent 
mucocutaneous diseases worldwide. To gain insight into 
the battlefields of genital herpes infection, multiplexed 
immunofluorescence-based imaging approaches are used 
for cellular classification and functional distinction to 
characterize the local inflammatory responses. However, 
HSV-infected lesions contain densely infiltrated immune 
cells that are tightly packed together and vary in cellular 
size, morphology, and phenotype, making precise cell 
segmentation challenging. It is an open question whether 
existing cell segmentation models are capable of achiev-
ing expert-level performance on such imagesets.

The rest of the paper is organized as follows. In the 
results section we first report a new imageset of anno-
tated immunofluorescence images of HSV lesion tissue 
that has been immunostained for the immune cell sur-
face markers CD3, CD4, and CD8. The imageset contains 
over 12,000 expert-drawn cell masks, which we divide 
into a training set and a test set. We then evaluate the 

performance of 18 Cellpose, DeepCell, and Mask R-CNN 
models trained using the Cellpose, TissueNet [11], and 
BBBC038v1 (Kaggle 2018 Data Science Bowl dataset 
from the Broad Bioimage Benchmark Collection) [22] 
imagesets. Next, we further train five Cellpose models, 
two DeepCell models, and one Mask R-CNN model with 
our imageset and examine how the performance changes 
with increasing training dataset size. The performance 
of Cellpose models stands out and we seek to further 
improve the accuracy of predictions by optimizing vari-
ous aspects of Cellpose training and inference. Lastly, we 
visually compare the predicted masks before and after 
further training. We end the paper with a discussion 
on the achievements and limitations of the existing cell 
segmentation models and touch on directions for future 
research.

Methods
Immunofluorescence-stained tissue sections of various 
markers of interest were imaged with a Zeiss Pln Apo 
20x/0.8 DICII objective lens with 500 nm/pixel resolu-
tion (Canopy Biosciences’ ZellScannerOne imaging sys-
tem) [23].

To annotate the images, an expert with 10+ years of 
experience in imaging drew ground truth masks using 
Fiji’s (ImageJ’s) polygon tracing tool. The masks were 
drawn on top of images shown at 400% magnification. 
To provide maximum contrast, the images were shown 
in grayscale. In addition, various image cues includ-
ing brightness differences, cell-cell boundaries, and halo 
effects were utilized to determine cell boundaries, espe-
cially in cell clusters. Each cell mask took 15-60 mouse 
clicks and 20-60 seconds to draw, depending mostly on 
cell size variability and varying difficulty in deducing cell 
shape.

Two pre-processing steps were performed before cell 
segmentation: (1) background reduction and optimiz-
ing brightness using the ZKW DataWizard applica-
tion, and (2) eliminating/blacking out false or artificial 

Fig. 1 All methods model whether a pixel is inside or outside a cell. In addition, A Cellpose models gradient flow derived through simulated 
diffusion ([9] Fig. 1c); B DeepDistance and DeepCell model inner and outer distance maps derived from cell centers and boundaries ([13] Fig. 2b 
and c); C Mask R-CNN models bounding boxes, which are rectangular regions surrounding each cell ([21] Fig. 16b and c)
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fluorescence signals generated by debris introduced into 
the chip chamber during the multiple staining cycles 
using Fiji (ImageJ).

All model training and evaluation scripts are contained 
in the following GitHub repository: https:// github. com/ 
youyi fong/ dense_ cell_ segme ntati on. Cellpose model train-
ing and evaluation were implemented in a series of shell 
scripts. We used a fork of Cellpose (https:// github. com/  
youyi fong/ cellp ose) to implement changes that allow 
the modification of some training parameters. Deep-
Cell model training and evaluation were implemented 
in a series of Jupyter Notebooks. For training with Tis-
sueNet 1.0 data, we first extracted the nuclear and cyto-
plasmic marker training data into separate directories. 
Each training image was 512×512 pixels. For training 
with immunofluorescence images of HSV-infected skin 
lesion biopsies, each training image was rescaled by a 
factor of 2 and divided into 25 512×512 overlapping 
patches. CellSeg and JACS model training and evalu-
ation were implemented in a series of python and shell 
scripts. Please see the readme file in the repository for 
more details.

The training results for the Cellpose models are numer-
ically reproducible on CPU and GPU. The training results 
for DeepCell and Mask R-CNN models are numerically 
reproducible on CPU but not on GPU due to non-deter-
minism in some GPU algorithms.

Results
Annotation of immunofluorescence images 
of inflammatory lesion skin biopsies
We annotated seven images immunofluorescence stained 
with immune cell surface markers, CD3, CD4 or CD8, 
and created a total of 12,377 cell masks as ground truth by 
an expert with 10+ years research experience (Table 1). 
The images were analyzed in gray scale and at 400% mag-
nification to ensure best quality. Various signal cues, 
including brightness, cell boundary, and halo effect, were 

considered in determining individual cells, especially in 
cell clusters. Assuming that training data enriched in 
dense regions would help improve model performance 
the most, we sampled five CD3-stained images, one 
CD4-stained image, and one CD8-stained image, as all T 
cells express CD3 and only a subset express CD4 or CD8.

Each image is measured at 1392×1040 pixels. To pre-
vent image-to-image variation from introducing bias into 
the results, we split each image into a 1159x1040 train-
ing portion and a 233×1040 testing portion with a sin-
gle vertical cut, and did the same on the mask file. After 
splitting, we identified the masks that fell on the cut line, 
removed these masks from the mask files, and set the 
pixel intensities for the area covered by these masks to 
the background value in the image files. Alternatively, the 
split can be done by cutting each image into non-over-
lapping tiles of equal sizes and selecting a random por-
tion for testing. We chose the single cut approach here 
because there is less information loss due to the cut lines, 
and non-uniformity of background effects within each 
image appears minimal in this imageset. The test images 
were used to examine model performance, while the 
training images were used to train and improve models in 
cell segmentation.

Performance of models trained with Cellpose, DeepCell 
and BBBC038v1 imagesets
We compare the prediction performances of 18 models 
that are either pre-trained or trained by us using Tis-
sueNet and BBBC038v1 imagesets (Table  2 and Fig.  2). 
Throughout this paper, we measure prediction perfor-
mance for a single test image in terms of average preci-
sion (AP, also referred to as the Critical Success Index). 
This metric is calculated as AP = TP/(TP+FN+FP), 
where true positive (TP) is the number of correctly iden-
tified cells, false negative (FN) is the number of actual 
cells not predicted, and false positive (FP) is the num-
ber of predicted cells not corresponding to actual cells. 
The mean AP value across all test images is referred to 
as mAP. Since TP, FN, and FP depend on the values used 
to threshold intersection over union (IoU) between a 
predicted cell and an actual cell, AP and mAP are also 
dependent on the threshold. We use a common thresh-
old, 0.5, for the results below.

Cellpose provides a model zoo that contains over a 
dozen pre-trained models. These models share the same 
neural network architecture, but differ in their training 
dataset. The default model is cyto, which was trained on 
about 70,000 cells from six different image types curated 
by the authors, including fluorescence microscopy 
images of well-separated neuroblastoma cells from the 
Cell Image Library [24], brightfield microscopy images, 
and even non-microscopy images such as apples and 

Table 1 Numbers of ground-truth masks generated in each of 
the seven images

Training Testing Training+Testing

1_CD8 423 127 550

2_CD3 1450 417 1867

3_CD4 1082 282 1364

4_CD3 1620 347 1967

5_CD3 2255 402 2657

6_CD3 1458 437 1895

7_CD3 1818 259 2077

Total 10106 2271 12377

https://github.com/youyifong/dense_cell_segmentation
https://github.com/youyifong/dense_cell_segmentation
https://github.com/%20youyifong/cellpose
https://github.com/%20youyifong/cellpose
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jellyfish. A sample neuroblastoma cell image is shown in 
Supplemental Materials Fig. A.1. Cyto was shown to per-
form very well on neuroblastoma cell images, achieving a 
mAP of around 0.9 [9]. The diversity of the training data 
also confers a degree of robustness on cyto such that it 
performs reasonably well even on image types on which 
it was not trained. For example, when applied to the 
fluorescence- and mass spectrometry-based TissueNet 

images [11] and the phase contrast images from the Live-
Cell database [20], cyto has a mAP of around 0.5 and 0.4, 
respectively [10]. Cellpose also includes cyto2, which was 
trained on the same data as cyto plus additional user-con-
tributed images.

Cellpose 2.0 adds two models that are fine-tuned with 
data from TissueNet and LiveCell. These two mod-
els improve the mAP for TissueNet and LiveCell test 

Fig. 2 Average precision of the pre-trained models. Each point corresponds to one pre-trained model. DC: DeepCell, MR-CNN: Mask R-CNN

Table 2 Average precision of the pre-trained models

1 2 3 4 5 6 7 mAP
CD8 CD3 CD4 CD3 CD3 CD3 CD3

Cellpose

cyto 0.623 0.570 0.669 0.455 0.409 0.480 0.406 0.516

cyto2 0.561 0.534 0.584 0.437 0.407 0.462 0.403 0.484

nuclei 0.217 0.283 0.135 0.234 0.231 0.267 0.144 0.216

tissuenet 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.001

livecell 0.392 0.178 0.356 0.158 0.137 0.123 0.256 0.229

TN1 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.001

TN2 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.001

TN3 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.001

LC1 0.252 0.179 0.199 0.117 0.136 0.165 0.144 0.170

LC2 0.293 0.122 0.243 0.086 0.112 0.038 0.104 0.142

LC3 0.479 0.267 0.457 0.241 0.208 0.219 0.226 0.300

LC4 0.276 0.131 0.263 0.124 0.109 0.096 0.173 0.167

DeepCell

cytoplasm 0.225 0.402 0.398 0.297 0.145 0.146 0.202 0.259

nuclear 0.312 0.373 0.486 0.297 0.170 0.113 0.172 0.275

tn_cyto 0.248 0.163 0.175 0.105 0.092 0.081 0.115 0.140

tn_nuclear 0.385 0.467 0.432 0.373 0.434 0.374 0.244 0.387

Mask R-CNN

CellSeg 0.466 0.427 0.478 0.408 0.340 0.390 0.316 0.404

jacs 0.383 0.385 0.423 0.338 0.316 0.344 0.293 0.355



Page 5 of 13Han et al. BMC Medical Informatics and Decision Making          (2024) 24:124  

images to around 0.75 and 0.7, respectively [10]. In 
addition, due to the heterogeneity of these two large 
image databases, Cellpose also provides TN1, TN2, and 
TN3, which are models fine-tuned with distinct subsets 
of TissueNet, and LC1, LC2, LC3, and LC4, which are 
models fine-tuned with distinct subsets of LiveCell.

These 11 Cellpose pre-trained models were trained on 
a mix of one-channel and two-channel images and can 
make predictions for either one-channel or two-chan-
nel images. The first channel always contains images 
of cytoplasm or cell surface markers and the optional 
second channel contains images of nuclear markers. 
For our images taken from the HSV lesion skin tissues, 
lymphocyte nuclei DAPI staining is dim and often seen 
as fused patterns (Supplemental Materials Fig. A.3). We 
thus only used one-channel cell surface marker images 
in our testing.

Cellpose also includes a pre-trained model nuclei, 
which was trained on one-channel images of nuclei. 
The types of nuclei images used to train this model are 
not clear from the online documentation. Although 
trained on nuclei images, the model can also be used 
to segment images of cell surface markers because the 
model is agnostic of the distinction between cells and 
nuclei. We included this model in our test as well for a 
total of 12 Cellpose models.

DeepCell provides three pre-trained segmentation 
models: CytoplasmSegmentation, NuclearSegmenta-
tion, and Mesmer. The first two models share the same 
model architecture, which introduced a modified inner 
distance loss function that depends on cell size [11]. 
During training, the models include an inner distance 
head, an outer distance head, and a classification head, 
and expect one-channel image files and one-channel 
mask files as input. The CytoplasmSegmentation model 
was trained from a computationally curated dataset 
that comprises pooled phase and fluorescent cytoplasm 
data, and the NuclearSegmentation model was trained 
from a pooled nuclear dataset from HEK293, HeLa-S3, 
NIH-3T3, and RAW264.7 cells. As is the case with the 
Cellpose nuclei model, we can use the NuclearSegmen-
tation model to segment images of cell surface markers 
as well.

The last model, Mesmer, has a different model archi-
tecture from the two previous models. It uses two inner 
distance heads and two classification heads, and trains 
on two-channel image files and two-channel mask files, 
where one channel is for a cytoplasmic or cell surface 
marker and the other channel is for a nuclear marker. 
Mesmer was trained with TissueNet, which includes over 
a million cells in total. At prediction, Mesmer expects 
two-channel image files as input and tries to predict 
every nucleated cell in the image. As the DAPI staining is 

dim and fused in these tissues and our goal is to predict 
cells expressing specific markers, we skipped Mesmer in 
our test.

Because the pre-trained CytoplasmSegmentation and 
NuclearSegmentation models included in DeepCell are 
not trainable, to prepare for the next section we imple-
mented a DeepCell model same as the model in Cyto-
plasmSegmentation and NuclearSegmentation using the 
DeepCell code. We trained the model with the cytoplasm 
channels in the image and mask files from TissueNet. 
There were over 800,000 training instances. A sample 
image is shown in Supplemental Materials Fig. A.2. We 
followed the training procedure in a training notebook 
included in DeepCell, and refer to the trained model 
as DC tn_cyto. Similarly, we trained the same model 
using the nuclear channels in the image and mask files 
from TissueNet, which included over 700,000 training 
instances. We refer to this model as DC tn_nuclear.

CellSeg provides a single pre-trained model that is 
based on the Mask R-CNN architecture for general pur-
pose instance segmentation. An important modification 
to the model it introduced was reducing the contribu-
tion of the classification loss in the overall loss function. 
It was trained with image set BBBC038v1, which con-
tains nearly 30,000 segmented nuclei. CellSeg includes an 
optional mask expansion step to go from nuclear masks 
to cell masks. Since we use the model to segment cell sur-
face marker images, we skip the mask expansion step.

Since the pre-trained model provided by CellSeg is 
not trainable, to prepare for the next section, we imple-
mented a Mask R-CNN model using the Torchvision 
library and used the CellSeg code to perform post-pro-
cessing related to stitching together image tiles. We 
adopted the same modification to the loss function that 
was introduced by [12], and trained it using image set 
BBBC038v1. We refer to the model thus derived as Just 
Another Cell Segmenter (JACS).

All three sets of pre-trained models include param-
eters that can be adjusted at prediction time. We left all 
these parameters at default with one important exception 
- the parameter that controls rescaling of testing images 
(diameter in Cellpose, image_mpp in DeepCell, and 
INCREASE_FACTOR in CellSeg). The default in Cellpose 
is to estimate the size of cells in the test image in a pre-
liminary run and scale the test image so that the average 
cell size from the test image matches that of the data used 
to train the Cellpose model. We chose the default option 
for all Cellpose models. DeepCell and CellSeg lack such a 
step to choose rescaling adaptively, so we set the param-
eter by experimenting with a sequence of values and 
chose the one with the best mAP. For the two DeepCell 
models that we trained with TissueNet data, we reuse the 
rescaling parameter derived for the DeepCell models. For 
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JACS, we found that scaling was effectively controlled by 
the size of the patches used in evaluation and we chose a 
patch size that was comparable to the size of the training 
images.

The APs of all 18 pre-trained models are presented in 
Table  2 and Fig. 2. Based on mAP, the two best models 
are Cellpose cyto (0.516) and cyto2 (0.484). CellSeg comes 
in third place with a mAP of 0.404. Among the DeepCell 
models, tn_nuclear (0.387) performs the best and tn_cyto 
(0.140) performs the worst. This is not surprising when 
we look at a sample image from TissueNet (Fig. A.2), 
which shows the difficulty in defining cell-cell boundaries 
based on cytoplasmic staining. This may also help explain 
why the worst performers from Cellpose are tissuenet 
(0.001), TN1 (0.001), TN2 (0.001), and TN3 (0.001), all 
models that were fine-tuned with TissueNet data (Cell-
pose training does not use nucleus masks).

Comparing across testing images, Fig.  2 shows that 
the models overall perform better on the CD4 and CD8 
images than on the CD3 images, consistent with the fact 
that cell density is lower in the CD4 and CD8 images 
than in the CD3 images.

Training with images of densely packed cells improves 
prediction
The performance of the pre-trained models showed 
promise but was not good enough for practical use. We 
hypothesized that further training of these models with 
immunofluorescence images of inflammatory lesion skin 
biopsies could improve prediction accuracy.

All the pre-trained Cellpose models are trainable. We 
selected four of them for further training: cyto, cyto2, 
tissuetnet, and livecell. Cyto and cyto2 had the best per-
formance among all pre-trained models in the previous 
section. We included tissuenet and livecell as a compari-
son because they were trained with more data than cyto 
and cyto2. We also trained a Cellpose model that has ran-
dom weights for comparison, which we will refer to as 
none because it was not pre-trained with any data.

The two pre-trained DeepCell models, Cytoplasm-
Segmentation and NuclearSegmentation, and the Mask 
R-CNN CellSeg model cannot be fine-tuned because they 
leave out the binary classification head. However, the two 
DeepCell models that we trained with TissueNet images, 
tn_cyto and tn_nuclear, and the Mask R-CNN model jacs 
we trained with image set BBBC038v1 can be fine-tuned, 
and we selected all three of them.

Many parameters can be adjusted in the training stage. 
The default choices for most of the parameters are rea-
sonable, but one aspect that requires careful considera-
tion is scaling of the new training data to match the data 
used to pre-train the models. Cellpose handles this issue 
in a way that requires no user action: all pre-trained cell 

segmentation models have the same mean cell diameter 
of 30 and Cellpose estimates the mean cell diameter in 
the new training images in a preliminary step, as is done 
for the test images in evaluation. Cellpose then uses the 
estimated mean cell diameter to compute a scale factor 
for the new training images. For the DeepCell models, 
we added a step to rescale the training images by a factor 
before using them in training. This factor was based on 
the image_mpp that led to the best prediction accuracy 
from the previous section. For tn_cyto and tn_nuclear, 
the rescaling factors were 2/0.65 and 1.3/0.65, respec-
tively, where 0.65 is the default image_mpp of DeepCell. 
For JACS, as in evaluation, scaling is effectively con-
trolled by the patch size using in training and we selected 
256x256 to correspond to the size of training images in 
image set BBBC038v1.

We trained each of the eight selected models seven 
times, every time adding one more training image. The 
training images were ordered in the same sequence as 
which they were annotated and the prediction perfor-
mance of the trained models was evaluated in the same 
way as in the previous section. Each Cellpose and Mask 
R-CNN model training was repeated three times with 
three random seeds and the evaluation results from the 
three runs are averaged. The mAPs are summarized in 
Fig. 3 and Table 3. For the five Cellpose models, from 0 
to 423 training instances (1 training image), tissuenet and 
livecell show a dramatic increase in performance, while 
the performance of cyto and cyto2 actually drops. In other 
words, after the first training image, the performance of 
the four pre-trained Cellpose models converges. As the 

Fig. 3 mAPs of the fine-tuned models. cp: Cellpose, dc: DeepCell. 
Each pre-trained model is trained seven times, each time adding 
a new training image in the order shown in Table 1. The x axis 
indicates the number of masks included in training
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second training image is added, the number of train-
ing instances goes from 423 to 1873 and all five Cell-
pose models show a large improvement in performance. 
After two training images, performance still increases 
with additional data, but the rate of improvement slows 
to about 0.007 mAP per 1000 cells (averaged across five 
models).

The two DeepCell models and the Mask R-CNN model 
exhibit similar trends as the Cellpose models. tn_nuclear 
performance drops as the first training image is added, 
tn_cyto shows large improvements as the first two train-
ing images are added, jacs shows a large improvement as 
the first image is added. All three models show some con-
tinued improvement as more training images are added.

After trained with all 7 images or 10,000 training 
instances, cp cyto and cp cyto2 perform the best, followed 
by cp tissuenet and cp livecell, which are better than cp 
none. All Cellpose models outperform the DeepCell and 
Mask R-CNN models. In Section B of the Supplemen-
tary Materials, we present more detailed analyses show-
ing that the fine-tuned models perform well on test data 
from images that they have not seen before.

To make a more complete comparison, we also com-
puted the model performance in terms of Adjusted 
Rand Index (ARI). ARI is a common measure used to 
compare the similarity between two data clusterings. 
The results of cell segmentation can be viewed as clus-
ters of pixels, with each cluster corresponding to one 
cell. Thus, in the context of cell segmentation, the ARI 
between a set of predicted masks and the ground truth 
masks indicates how often a pair of pixels that should be 
in the same cell are actually segmented into the same cell, 
or how often a pair of pixels that should be in different 

cells are actually segmented into different cells. The ARI 
has a value between -1 and 1. A value of 0 indicates that 
the two predicted masks do not agree with the ground 
truth on any pair of points and are essentially random. A 
value of 1 indicates that the predicted masks are perfect. 
Though a value less than 0 is theoretically possible, it is 
unlikely to arise in real-world data. The last column in 
Table 3 shows that the fine-tuned Cellpose models have 
similar ARIs, ranging from 0.812 to 0.817, compared to 
0.648 to 0.668 for the fine-tuned DeepCell models and 
0.706 for the fine-tuned MR-CNN jacs model.

Optimizing Cellpose performance
In the previous two sections we left most of the training 
and evaluation parameters at their default values. This is 
partly necessary because there are many models to com-
pare and partly desirable because we wanted to compare 
different models as they were. The results from the pre-
vious section show that the Cellpose models initialized 
with the weights from cyto and trained with seven new 
training images perform the best in our test. Now we 
seek to optimize the training and evaluation of cp cyto-
based models.

The first aspect of training we delve into is the size of 
the input to the convolutional neural network. By default, 
Cellpose takes a 224x224 patch from the center of the 
training image after random transformation and feeds it 
to its neural network. The choice of this patch size in a 
convolutional neural network goes back to at least [25]. 
To examine the effect of increasing or reducing the patch 
size, we compared its performance with three other 
choices of patch size. Each training was repeated three 
times with three random seeds and the evaluation results 

Table 3 Performance of the fine-tuned models. Each pre-trained model is trained seven times. From Train1 to Train7, new training 
images are added one at a time in the order shown in Table 1. For train7, two performance metrics are shown: mAP and ARI, where ARI 
is the average Adjusted Rand Index over seven test images

mAP ARI

Pretrained Train1 Train2 Train3 Train4 Train5 Train6 Train7 Train7

Cellpose

cyto 0.518 0.453 0.607 0.633 0.657 0.668 0.691 0.694 0.815

cyto2 0.478 0.460 0.616 0.632 0.652 0.661 0.689 0.689 0.817

tissuenet 0.001 0.471 0.598 0.604 0.630 0.647 0.671 0.676 0.813

livecell 0.211 0.420 0.597 0.591 0.635 0.648 0.665 0.673 0.812

none 0.293 0.510 0.510 0.576 0.589 0.616 0.615 0.791

DeepCell

tn_nuclear 0.387 0.373 0.381 0.380 0.392 0.426 0.452 0.488 0.668

tn_cyto 0.140 0.277 0.349 0.337 0.357 0.355 0.423 0.428 0.648

MR-CNN

jacs 0.350 0.530 0.542 0.519 0.548 0.558 0.576 0.576 0.706
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from the three runs were averaged. The results, summa-
rized in Table 6, show that patch size has a large impact 
on performance and that the default choice 224x224 is 
much better than smaller patch sizes. Further increas-
ing the patch size to 448x448 improves the mAP only by 
0.004, but because there is little downside to choosing the 
largest patch size that is practical (patch size is limited by 
the amount of available GPU memory) and because the 
improvement is seen across all seven test images, we set-
tled on patch size 448x448 for further experimentation. 
For inference, we keep the default patch size 224x224.

The second aspect of training we experimented with 
was the data augmentation step. Cellpose by default uses 
several data augmentation strategies, including random 
rotation, random flipping, random scaling, and random 
translation. Random translation is necessary for making 
use of the whole image when the patch size is different 
from the image size. To examine the effect of the other 
three transformations, we turned them off one at a time, 
implemented by making minimal changes to the cellpose 
package. Alternatively, general tools for augmentation in 
semantic segmentation and instance segmentation tasks 
can be used [26]. Each training was repeated three times 
with three random seeds and the evaluation results from 
the three runs were averaged. Note that at inference time 
no data augmentation was performed. The results, sum-
marized in the right half of Table  6, show that turning 
off random rotation improves the mAP by 0.013, which 
is almost equivalent to adding 2000 training instances 
based on the estimate from the previous section (AP for 
individual images changes between -0.003 and 0.030). 
Turning off random flipping improves the mAP by 0.002 
(AP for individual images changes between -0.007 and 
0.013). Turning off random scaling decreases the mAP by 
0.003 (AP for individual images changes between -0.023 
and 0.018). We also tried turning off both random rota-
tion and random flipping, which resulted in a change of 
-0.003 in mAP. It is worth noting that we used the same 
transformation for all seven training images and that 
for larger, more diverse training datasets, it is possible 
to apply different transformations to individual training 
images [27].

The results in Table 6 are the average mAP across rep-
licates from three random seeds. To test whether this 
difference between turning random rotation on and off 
is statistically significant, we repeated the experiment 
three more times. The individual mAPs from the six rep-
licates are shown in Supplemental Materials Table A.1. 
The Wilcoxon rank-based test comparing the mAPs with 
and without rotation returned a P-value of 0.031. The 
Wilcoxon rank-based tests comparing the mAPs with 
and without random scaling or random flipping both 
returned a P-value of 0.81. Based on these results, we 

recommend turning off random rotation in the data aug-
mentation step in Cellpose training.

Thirdly, we experimented with collating four cop-
ies of each training image in a 2 × 2 formation and used 
it in training. Thus, each training image was measured 
2318×2080 pixels. This did not lead to improvement in 
performance.

Lastly, we tested how batch size affected performance. 
Cellpose uses a default batch size of 8. We found that 
decreasing batch size led to worse performance.

Cellpose has two evaluation time parameters that con-
trol the post-processing of the neural network output 
into mask prediction. The first parameter is model fit 
threshold, which parameterizes a quality control step that 
is applied to the gradient flow output from the network. 
The default value is 0.4, and setting larger value returns 
more masks but some of them may be ill-shaped. The 
second parameter is cellprob_threshold, which is applied 
to the pixel probability map resulted from the network 
and only pixels above the threshold are considered in the 
post-processing step. The default is 0 on the logit scale, 
and setting larger value returns less masks. The results 
are summarized in Table  4 and show that the default 
values for these two thresholds selected by Cellpose per-
form the best, which lead to an mAP of 0.711 and an ARI 
of 0.826.

We further hypothesized that if we focused on masks 
above a certain size, the mAP would improve. We filtered 
both the ground truth masks and the predicted masks by 
the number of pixels in the masks and experimented with 
three thresholds:, 50, 100, and 200. The results are shown 
in (Table 5). A minimum mask size of 100 produced the 
best mAP 0.746.

To further understand the limiting factors on model 
performance, we asked the human expert to draw cells 

Table 4 Effect of evaluation time parameters on the average 
precision of Cellpose models trained with seven training images, 
initialized with cyto weights, patch size 448×448, and no random 
rotation in the data augmentation step

default flow threshold prob threshold

0.3 0.5 -1 1

1_CD8 0.730 0.728 0.726 0.706 0.729

2_CD3 0.746 0.733 0.748 0.730 0.741

3_CD4 0.795 0.780 0.782 0.772 0.778

4_CD3 0.649 0.630 0.646 0.619 0.647

5_CD3 0.699 0.664 0.698 0.666 0.687

6_CD3 0.710 0.684 0.703 0.661 0.716

7_CD3 0.648 0.623 0.640 0.621 0.657

mAP 0.711 0.692 0.706 0.682 0.708
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masks a second time for one of the test images, 2_CD3. 
Treating this set of masks as another set of predictions, 
we computed its AP against the first set of expert-
drawn masks (without filtering by size) and got 0.662. 
An area where the two sets of expert-drawn masks dif-
fer is shown in Supplementary Fig. A.5.

Visualizing the predicted masks
To obtain a more intuitive understanding of how dif-
ferent models perform, we overlay the predicted marks 
from four models on top of the 2_CD3 test image in 
Fig.  4. To facilitate comparison, we draw the predicted 
masks in two colors; the true positive masks are shown in 
yellow while the false positive masks are shown in green. 
The ground truth masks are shown in red as reference in 
the left-most panel. Comparing the three train7 models 
on the right, we see that the DeepCell model predictions 
have more green (false positive) masks than the other 
two, while the Mask R-CNN model predictions have 
fewer yellow (true positive) masks than the other two. 
Comparing the cp cyto and cp cyto-train7 models, we see 
that the cp cyto-train7 panel has more yellow masks than 
the cp cyto panel.

To get a more detailed look at the differences between 
cp cyto and cp cyto-train7, we zoom into an area near 
the lower-right corner of the 2_CD test image in Fig. 5. 
The four white arrows in panel (d) and (f ) point to places 
where cyto-train7 correctly segments clusters of cells 
while cyto fails to. Another example of clustered cells is 
shown in Fig. A.4 of the Supplementary Materials. From 

Table 5 Effect of minimum mask size on the average precision 
of Cellpose models trained with seven training images, initialized 
with cyto weights, patch size 448×448, and no random rotation in 
the data augmentation step

min size

0 50 100 200

1_CD8 0.730 0.735 0.710 0.697

2_CD3 0.746 0.750 0.774 0.669

3_CD4 0.795 0.800 0.822 0.753

4_CD3 0.649 0.663 0.731 0.637

5_CD3 0.699 0.701 0.724 0.646

6_CD3 0.710 0.712 0.727 0.615

7_CD3 0.648 0.649 0.736 0.586

mAP 0.711 0.716 0.746 0.658

Fig. 4 Predictions on a 2_CD3 test image. All panels show immunostaining with an anti-CD3 antibody. gt: ground truth, cp: Cellpose, dc: DeepCell, 
mrcnn: Mask R-CNN. Ground truth masks are shown in red. True positive and false positive predicted masks (IoU threshold 0.5) are shown in yellow 
and green, respectively
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these images we see that when two cells stained with 
surface markers are very close to each other, the border 
between the two cells tends to be stained more brightly. 
This is one of the visual cues that human experts use in 
their work and cp cyto-train7 appears to be able to mimic 
that to some extent.

Conclusion
Accurate cell segmentation is key to all the downstream 
analyses in spatial molecular profiling. Due to the poten-
tial difficulty in distinguishing individual cells within 
densely packed tissues, segmentation based on cell sur-
face markers allows for precise segmentation in a way 
that is not possible using only nuclear and cytoplasmic 
markers [28]. In this paper we presented a set of anno-
tated immunofluorescence images of cell surface mark-
ers stained HSV-infected skin. We investigated the 
performance of three types of deep learning models for 
cell segmentation both before and after training on this 
imageset. The best model after training, cyto-train7, 
achieved a superhuman performance and adds a valuable 
tool for precise segmentation of cells in dense tissues for 
the field.

We first evaluated eighteen deep learning-based cell 
segmentation models that are either pre-trained or 
trained by us using public imagesets, and found the mAP 
to range from 0.001 to 0.516. We fine-tuned eight of 
these models using more than 10,000 training instances 

from seven immunofluorescence images and found that 
prediction performance improved substantially after 
training. The best model after training was the one ini-
tialized with weights from the Cellpose cyto model, 
which increased the mAP from 0.516 (no fine tuning) 
to 0.694. The relationships between five different Cell-
pose models are shown schematically in Fig. 6. Interest-
ingly, training dramatically improved the performance 
of the two Cellpose models cyto-tissuenet and cyto-live-
cell, increasing the mAP from 0.001 to 0.676 and from 
0.229 to 0.673, respectively, almost matching cyto-train7. 
One way of thinking about these results is that training 
with our imageset “unlocks” capabilities that cyto-tis-
suenet and cyto-livecell already have, but are obscured 
in their respective additional training processes. These 
results highlight both the plasticity of the Cellpose mod-
els and the robust performance of the cyto model as a 
pre-trained model for further training using different 
imagesets.

We also trained a Cellpose model from randomly ini-
tialized weights. Figure  3 shows that as the number of 
training instances increases, the gap in performance 
between starting from cyto and starting from random 
weights remains relatively constant, even as the rates of 
gain for both curves slow down. This suggests that the 
training signal in our imageset alone is not sufficient and 
that initializing with cyto, which is trained with a diverse 
set of images from the Cellpose imageset, is essential.

Fig. 5 A magnified portion of the 2_CD3 test image near the lower-right corner. All panels show immunostaining with an anti-CD3 antibody. 
Ground truth masks are shown in red in panels b, d, and f. cyto-predicted masks are shown in green in panels c and d. cyto-train7-predicted masks 
are shown in green in panels e and f. The four white arrows indicate places where cyto-train7 shows improvements upon cyto 
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We further optimized training of the Cellpose models 
and found that removing random rotation in the data 
augmentation step further increased mAP by 0.013 (P 
value 0.031 across replications with different random 
seeds). One potential explanation to this surprising result 
is that rotation is not a loss-free transformation and some 
signals may be distorted in the transformed images. This 
may not matter for classification tasks, where data aug-
mentation techniques were originally developed, but for 
segmentation tasks, it could pose a problem. In fact, in 
medical image segmentation, that random rotation may 
hurt performance has been widely recognized [28–31, 
e.g.]. Consistent with this explanation is the observation 
that the flip-only transformation, which does not lead to 
quality loss, is also not associated with performance deg-
radation (Table 6).

The mAP of the optimized Cellpose model in the cur-
rent imageset is 0.711, which could ideally be further 

improved upon. More training data may improve the 
mAP as the results in Table 3 show that the average mAP 
of the five Cellpose models improves at a rate of 0.007 
per 1000 cells from Train2 and Train7. However, returns 
diminish at some point when continuing to add more 
training data. For example, with cyto mAP improved 
by 0.026 from Train2 to Train3, but only by 0.003 from 
Train6 to Train7. The quality of training data may also 
play a significant role in prediction accuracy. This is sup-
ported by two lines of evidence. First, since a slice of tis-
sue may go through a cell at a high latitude, the size of 
a cell in the image may include a range. It is hard to be 
categorical about the ground truth at the low end of the 
range. Thus, restricting to masks above a certain size 
threshold may result in higher accuracy. Our results sup-
ported this hypothesis. The mAP improved from 0.711 
to 0.746 with minimum size 100 pixels (Table 5), which 
is equivalent to adding 5000 training masks based on 

Fig. 6 Relationships between four Cellpose models. Cyto is trained with ∼70,000 cells from the Cellpose imageset [9]. Starting from cyto, cyto-livecell 
is obtained by training with ∼80,000 cells from the LiveCell imageset [10] and cyto-train7 is obtained by training with ∼10,000 cells from the current 
imageset. Cyto-livecell-train7 is obtained by starting from cyto-livecell and training with the current imageset. The mAPs for the test images 
from the current imageset are shown under each model

Table 6 Effect of patch size and data augmentation on the average precision of Cellpose models trained with seven training images 
initialized with cyto weights

56x56 112x112 224x224 448x448 448x448

full data augmentation no rotate no flip no scale

1_CD8 0.646 0.671 0.703 0.718 0.730 0.720 0.695

2_CD3 0.587 0.697 0.749 0.749 0.746 0.752 0.753

3_CD4 0.668 0.734 0.762 0.765 0.795 0.773 0.751

4_CD3 0.503 0.600 0.628 0.644 0.649 0.639 0.649

5_CD3 0.491 0.616 0.690 0.690 0.699 0.687 0.693

6_CD3 0.555 0.644 0.686 0.687 0.710 0.700 0.705

7_CD3 0.450 0.575 0.639 0.635 0.648 0.628 0.617

mAP 0.557 0.648 0.694 0.698 0.711 0.700 0.695
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the estimate of 0.007 mAP/1000 cells. Second, the cyto-
train7 model achieved an AP of 0.746 on the test portion 
of 2_CD3 (Table 4, column 1), which is higher than that 
achieved by the human expert (the masks drawn by the 
same human expert on a different day for this test image 
had an AP of 0.662 relative to the original ground truth 
masks). This suggests that even human experts may have 
difficulty making consistent calls, most likely due to lim-
its on the signal-to-noise ratio in the imageset. We con-
jecture that better segmentation accuracy may come 
from training data of higher quality, e.g. increased image 
resolution.
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