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Abstract
Background and aims  Sexually transmitted infections (STIs) are a significant global public health challenge due 
to their high incidence rate and potential for severe consequences when early intervention is neglected. Research 
shows an upward trend in absolute cases and DALY numbers of STIs, with syphilis, chlamydia, trichomoniasis, and 
genital herpes exhibiting an increasing trend in age-standardized rate (ASR) from 2010 to 2019. Machine learning (ML) 
presents significant advantages in disease prediction, with several studies exploring its potential for STI prediction. The 
objective of this study is to build males-based and females-based STI risk prediction models based on the CatBoost 
algorithm using data from the National Health and Nutrition Examination Survey (NHANES) for training and validation, 
with sub-group analysis performed on each STI. The female sub-group also includes human papilloma virus (HPV) 
infection.

Methods  The study utilized data from the National Health and Nutrition Examination Survey (NHANES) program to 
build males-based and females-based STI risk prediction models using the CatBoost algorithm. Data was collected 
from 12,053 participants aged 18 to 59 years old, with general demographic characteristics and sexual behavior 
questionnaire responses included as features. The Adaptive Synthetic Sampling Approach (ADASYN) algorithm was 
used to address data imbalance, and 15 machine learning algorithms were evaluated before ultimately selecting the 
CatBoost algorithm. The SHAP method was employed to enhance interpretability by identifying feature importance in 
the model’s STIs risk prediction.

Results  The CatBoost classifier achieved AUC values of 0.9995, 0.9948, 0.9923, and 0.9996 and 0.9769 for predicting 
chlamydia, genital herpes, genital warts, gonorrhea, and overall STIs infections among males. The CatBoost classifier 
achieved AUC values of 0.9971, 0.972, 0.9765, 1, 0.9485 and 0.8819 for predicting chlamydia, genital herpes, genital 
warts, gonorrhea, HPV and overall STIs infections among females. The characteristics of having sex with new partner/
year, times having sex without condom/year, and the number of female vaginal sex partners/lifetime have been 
identified as the top three significant predictors for the overall risk of male STIs. Similarly, ever having anal sex with 
a man, age and the number of male vaginal sex partners/lifetime have been identified as the top three significant 
predictors for the overall risk of female STIs.
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Introduction
Sexually transmitted infections (STIs) pose a significant 
global public health challenge due to their high incidence 
rates, which exert substantial pressure on both family and 
national healthcare budgets while concurrently impair-
ing individual quality of life [1, 2]. Moreover, the wide-
spread issue of delayed STI diagnosis raises the risk of 
severe consequences such as compromised reproductive 
and neonatal health when early intervention is neglected 
[3]. Research indicates an upward trend in both absolute 
cases and disability-adjusted life years (DALYs) for STIs 
between 1990 and 2019 [4]. Syphilis, chlamydia, tricho-
moniasis, and genital herpes have demonstrated an 
increasing trend in age-standardized rates (ASRs) from 
2010 to 2019 [5]. Consequently, STIs remain a persistent 
global public health concern. Furthermore, since 2010, 
the age-standardized incidence rate among young people 
has exhibited an upward trend, particularly regarding 
syphilis [4]. As such, early intervention through STI pre-
diction is crucial [6].

Machine learning (ML) offers significant advantages in 
disease prediction, with numerous studies already explor-
ing its potential for STI prediction. Bao et al. [7] aimed to 
develop and evaluate the performance of machine learn-
ing models in predicting the diagnosis of HIV and STIs 
based on a large retrospective cohort of Australian men 
who have sex with men (MSM). Fieggen et al. [8] dis-
cussed crucial considerations when selecting variables 
for model development and evaluating the performance 
of various machine learning algorithms, as well as the 
potential role of emerging tools such as Shapley Additive 
Explanations in understanding and decomposing these 
models in the context of HIV. Xu et al. [9] sought to iden-
tify determinants and predict chlamydia re-testing and 
re-infection within one year among heterosexuals with 
chlamydia to pinpoint potential PDPT (Patient-Delivered 
Partner Therapy) candidates.

Our study developed male-based and female-based 
STIs risk prediction models using the CatBoost algo-
rithm, employing data from the National Health and 
Nutrition Examination Survey (NHANES) for train-
ing and validation. Sub-group analyses were conducted 
for each STI, including genital herpes, genital warts, 
gonorrhea, and chlamydia infections. The female sub-
group also encompassed human papillomavirus (HPV) 
infection.

Methods
Data source
NHANES is a series of studies aimed at evaluating the 
health and nutritional status of adults and children in 
the United States [10]. As a significant initiative of the 
National Center for Health Statistics (NCHS), NHANES 
contributes to the Centers for Disease Control and Pre-
vention’s (CDC) mission by generating essential health 
statistics for the nation.

Data were collected from the NHANES datasets span-
ning 2009 to 2016, encompassing 19,998 individuals aged 
between 18 and 59 years. The questionnaires from differ-
ent years exhibited subtle variations. For example, begin-
ning in 2015–2016, modifications on question wording 
and response categories were made to the sexual orien-
tation question, specific to males and females. Initially, 
we reviewed 53 questions, but due to variations and rele-
vance, the final selection included 48 questions that were 
consistent across all surveys. A total of 7,945 individu-
als were excluded due to their responses to the Sexual 
Behavior Questionnaire, specifically those who provided 
answers other than “yes” or “no” regarding whether a 
doctor had ever informed them of having HPV, genital 
herpes, genital warts, gonorrhea, or chlamydia, or those 
who refused to answer the questions. Consequently, the 
final sample comprised 12,053 participants, including 
6,163 females and 5,890 males.

Feature selection
The study incorporated general demographic character-
istics (gender, age, education level, and marital status) 
along with questions from the Sexual Behavior Question-
naire (codes and corresponding questions are accessible 
on the NHANES website: https://wwwn.cdc.gov/nchs/
nhanes). The feature selection process includes identi-
fying the consistent questions in all NHANES versions. 
Since some questionnaire items targeted exclusively 
either the male or female population, and questions serv-
ing as labels were excluded, the analysis for the female 
population included 30 features, while that for the male 
population comprised 33 features. For missing data, we 
applied imputation methods tailored to the data type. 
In addition, to ensure the comparability of feature scales 
across different measures, we implemented a normal-
ization process. Specifically, we utilized the Normalized 
Gini Coefficient, which scales data within a range from 
0 (indicating perfect equality) to 1 (indicating maximum 

Conclusions  This study demonstrated the effectiveness of the CatBoost classifier in predicting STI risks among both 
male and female populations. The SHAP algorithm revealed key predictors for each infection, highlighting consistent 
demographic characteristics and sexual behaviors across different STIs. These insights can guide targeted prevention 
strategies and interventions to alleviate the impact of STIs on public health.
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inequality). This normalization step is crucial in main-
taining consistency and reliability in the comparative 
analysis of our dataset features.

Balance of data
To address data balance issues, we reviewed literature 
such as Johnson and Khoshgoftaar’s work on deep learn-
ing with class imbalance [11] and Majority Weighted 
Minority Oversampling Technique (MWMOTE) [12]. 
We chose not to use random under or oversampling due 
to potential data loss or overfitting. Instead, we utilized 
the Adaptive Synthetic Sampling Approach (ADASYN) 
[13], considering its effectiveness in managing imbal-
anced datasets.

Algorithm
We carried out risk prediction modeling for various 
STIs cases within the study population using 15 unique 
machine learning algorithms, including Quadratic Dis-
criminant Analysis, Extra Trees Classifier, Random Forest 
Classifier, Light Gradient Boosting Machine, CatBoost 
Classifier, Gradient Boosting Classifier, Ada Boost Clas-
sifier, Decision Tree Classifier, K Neighbors Classifier, 
Ridge Classifier, Linear Discriminant Analysis, Logistic 
Regression, SVM - Linear Kernel, Naive Bayes, Dummy 
Classifier. In evaluating the performance of our model, 
we employed a comprehensive set of metrics, including 
Accuracy, Area Under the Curve (AUC), Recall, Precision 
(Prec), F1 Score, Cohen’s Kappa, and Matthews Correla-
tion Coefficient (MCC). After thoroughly evaluating and 

comparing the performance of these models, we ulti-
mately chose the CatBoost algorithm.

The CatBoost algorithm is a robust and highly efficient 
gradient boosting framework extensively employed in 
machine learning applications [14]. It outperforms tra-
ditional gradient boosting techniques, especially when 
managing complex datasets featuring numerous categori-
cal variables. The strength of the CatBoost algorithm lies 
in its capacity to handle feature interactions accurately 
while minimizing overfitting, thereby ensuring excep-
tional predictive power.

Python 3.12.0 was used to the balance of data. PyCaret 
2.3.1 in Jupyter Notebook was used to train and validate 
the CatBoost classifier. The “compare_models()” and “cre-
ate_model” functions in PyCaret were used, which auto-
matically handles data preprocessing, and then train and 
evaluate multiple models using 10-fold cross-validation, 
streamlining the selection of the most effective model 
based on performance metrics.

Interpretability
To enhance the interpretability of the CatBoost model, 
we employed the SHAP (SHapley Additive exPlanations) 
technique. This approach provides insights into how each 
feature contributes to the model’s prediction, allowing for 
a better understanding of the model’s decision-making 
process.

Results
Basic characteristics
Table  1 presents the demographic characteristics of the 
study participants. The mean age is approximately 39 
years for both males (n = 5,890) and females (n = 6,163). 
Educational attainment reveals that a higher percentage 
of females (35.18%) than males (29.86%) have some col-
lege education or associate degrees. In marital status, a 
majority of males are married (51.31%) compared to 
females (48.01%), with higher proportions of widowed 
(1.88%) and divorced (11.62%) statuses among females. 
Among male subjects, the prevalence rates were as fol-
lows: Chlamydia infection at 41 (0.70%), genital herpes at 
126 (2.14%), genital warts at 159 (2.70%), and gonorrhea 
at 26 (0.44%). Among female subjects, the prevalence 
rates were: Chlamydia infection at 92 (1.49%), genital 
herpes at 341 (5.53%), genital warts at 305 (4.95%), gon-
orrhea at 20 (0.32%), and HPV infection at 556 (9.02%). 
All feature codes and comments involved in subsequent 
analysis are shown in Table S1 of Supplemental Files.

Classification performance
The CatBoost classifier was trained and validated using 
ten-fold cross-validation to estimate out-of-sample per-
formance. Evaluation metrics included AUC, recall, 
accuracy, F1-score, kappa value, and precision. Tables  2 

Table 1  Demographics of datasets
Male 
(n = 5,890)

Female 
(n = 6,163)

Age (years) 39.04 ± 11.37 39.18 ± 11.36
Education (years)
  Less than 9th grade 338(5.73%) 321(5.21%)
  9-11th grade(Include 12th grade 
with no diploma)

856(14.53%) 734(11.91%)

  High school graduate/GED or 
equivalent

1426(24.21%) 1234(20.02%)

  Some college or AA degree 1759(29.86%) 2168(35.18%)
  College graduate or above 1511(25.65%) 1706(27.68%)
Marital status
  Married 3022(51.31%) 2959(48.01%)
  Widowed 41(0.70%) 116(1.88%)
  Divorced 483(8.20%) 716(11.62%)
  Separated 164(2.78%) 262(4.25%)
  Never married 1483(25.18%) 1447(23.48%)
  Living with partner 697(11.83%) 663(10.76%)
Chlamydia 41(0.70%) 92(1.49%)
Genital herpes 126(2.14%) 341(5.53%)
Genital warts 159(2.70%) 305(4.95%)
Gonorrhea 26(0.44%) 20(0.32%)
HPV / 556(9.02%)
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and 3 display the performance of the CatBoost classifier 
in predicting STI infection risk among male and female 
populations, respectively. We also compared the per-
formance of 15 models in Table S2-S12 of Supplemental 
Files. For males, the CatBoost classifier achieved AUC 
values of 0.9995, 0.9948, 0.9923, and 0.9996 for predict-
ing chlamydia, genital herpes, genital warts, and gonor-
rhea infections; it also achieved an AUC value of 0.9769 
for overall STIs. For females, the classifier attained AUC 
values of 0.9971, 0.972, 0.9765, 1 for chlamydia, genital 
herpes, genital warts, and gonorrhea infections; it also 
reached AUC values of 0.9485 for HPV infection and 
0.8819 for overall STIs. The ROC plots and confusion 
matrix for CatBoost classifier are shown in Figure S1-S4 
of Supplemental Files.

Model interpretation: Shapley Additive exPlanations 
(SHAP)
Utilizing the SHAP algorithm, the feature ranking inter-
pretation of the CatBoost classifier reveals the top 20 
most influential characteristics for predicting outcomes 
in both male and female populations (Figs. 1 and 2).

In general, the top three significant predictors of male 
chlamydia infection risk are identified as sxq648_2 (had 
sex with new partner/year), sxq806_1 (ever had anal sex 
with a woman), and ridageyr (age in years at screen-
ing). The top three important predictors for male geni-
tal herpes risk include sxq806_2 (ever had anal sex with 
a woman), sxq251_5 (times had sex without condom/
year), and sxq639 (female performed oral sex/year). For 
male genital warts risk, the top three important predic-
tors are sxq806_2 (ever had anal sex with a woman), 
sxd171 (female sex partners/lifetime), and ridageyr (age 
in years at screening). The top three important predic-
tors for male gonorrhea risk consist of sxq648_1 (had sex 
with new partner/year), sxq251_5 (times had sex without 
condom/year), and sxq824 (female vaginal sex partners/

life). Lastly, the top three important predictors for total 
male STI risk include sxq806_2 (ever had anal sex with a 
woman), sxq280_1 (circumcised or uncircumcised), and 
sxq251_5 (times had sex without condom/year).

The top three significant predictors of female chla-
mydia infection risk are identified as ridageyr (age in 
years at screening), dmdeduc2_5 (education level), and 
sxq251_5 (times had sex without condom/year). The top 
three important predictors for female genital herpes risk 
include sxq706_2 (ever had anal sex with a man), sxd031 
(how old when first had sex), and sxq294_1 (sexual iden-
tity/attraction). For female genital warts risk, the top 
three important predictors are sxq706_1 (ever had anal 
sex with a man), ridageyr (age in years at screening), 
and sxq294_1 (sexual identity/attraction). The top three 
important predictors for female gonorrhea risk consist of 
sxq648_2 (had sex with new partner/year), sxd031 (how 
old when first had sex), and sxq251_5 (times had sex 
without condom/year). The top three significant predic-
tors of female HPV infection risk include ridageyr (age 
in years at screening), sxq706_2 (ever had anal sex with a 
man) and sxd621(how old when first had oral sex). Lastly, 
the top three important predictors for total female STI 
risk include sxq706_2 (ever had anal sex with a man), rid-
ageyr (age in years at screening) and sxq724(male vaginal 
sex partners/lifetime).

Discussion
We developed risk prediction models for chlamydia, 
genital herpes, genital warts, and gonorrhea in male 
populations, as well as for chlamydia, genital herpes, 
genital warts, gonorrhea, and HPV infection in female 
populations using the CatBoost algorithm. The AUC 
values of these models range from 0.88 to 1, with over-
all STI prediction AUC values of 0.9769 and 0.8819 for 
males and females respectively. Lastly, we conducted an 

Table 2  Classification Performance of CatBoost classifier in male populations
Male-Label Accuracy AUC Recall Prec. F1 Kappa MCC
Chlamydia 0.9904 0.9995 0.9978 0.9831 0.9904 0.9807 0.9809
Genital herpes 0.9665 0.9948 0.9841 0.9513 0.9674 0.9329 0.9335
Genital warts 0.9621 0.9923 0.9802 0.9465 0.963 0.9242 0.9249
Gonorrhea 0.9926 0.9996 0.9981 0.9873 0.9927 0.9852 0.9852
STIs 0.923 0.9769 0.9426 0.9061 0.9239 0.8461 0.847

Table 3  Classification Performance of CatBoost classifier in female populations
Female-Label Accuracy AUC Recall Prec. F1 Kappa MCC
Chlamydia 0.9792 0.9971 0.9921 0.9675 0.9796 0.9585 0.9588
Genital herpes 0.9137 0.972 0.9322 0.8994 0.9155 0.8275 0.8281
Genital warts 0.9188 0.9765 0.9377 0.9037 0.9202 0.8375 0.8384
Gonorrhea 0.9946 1 0.9988 0.9905 0.9947 0.9893 0.9893
HPV 0.881 0.9485 0.9027 0.8679 0.8848 0.7619 0.7628
STIs 0.7932 0.8819 0.792 0.7904 0.7911 0.5863 0.5865
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interpretability analysis on the models and obtained fea-
ture importance rankings for various prediction models.

CatBoost is advantageous for its efficient processing of 
categorical data and robustness in complex datasets, but 
these benefits may not be as pronounced in smaller data-
sets [14]. In contrast, other algorithms such as Random 
Forest and Light Gradient Boosting Machine show high 
efficiency in large datasets [15], while Quadratic Discrim-
inant Analysis and Linear Discriminant Analysis perform 
well with simpler data distributions [16]. Therefore, while 
CatBoost is a powerful tool, its potential might not have 
been fully realized in our study. Future research should 
consider selecting algorithms that better align with the 
specific characteristics of the dataset to ensure accuracy, 
efficiency, and interpretability of the model.

In summary, while CatBoost presents a powerful tool 
for certain types of data, its application in our study 
might not have leveraged its full potential due to the data-
set’s size and nature. Future research could benefit from 
a more tailored approach in selecting algorithms, where 

the characteristics of the dataset are closely aligned with 
the algorithm’s strengths. This approach would ensure 
not just the accuracy of the model but also the efficiency 
and interpretability of the results.

Previous studies have employed machine lea rning 
to predict the risk of STI occurrence. For example, risk 
prediction tools have been developed to forecast HIV 
and STIs over the next 12 months [17], demonstrating 
acceptable performance for HIV (AUC = 0.72), syphilis 
(AUC = 0.75), gonorrhea (AUC = 0.73), and chlamydia 
(AUC = 0.67) infection prediction in test datasets. Xian-
glong Xu et al. [18] developed a machine learning-based 
STI risk prediction tool, MySTIRisk, which exhibits 
promising performance on the testing dataset (AUC 
for HIV = 0.78; AUC for syphilis = 0.84; AUC for gonor-
rhea = 0.78; AUC for chlamydia = 0.70). Furthermore, 
it demonstrated stable performance on both external 
validation data from 2019 (AUC for HIV = 0.79; AUC 
for syphilis = 0.85; AUC for gonorrhea = 0.81; AUC for 
chlamydia = 0.69) and data from 2020 to 2021 (AUC 

Fig. 1  The CatBoost classifiers for predicting chlamydia(A), genital herpes(B), genital warts(C), gonorrhea(D), and overall STIs(E) based on the SHAP 
algorithm in male populations
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for HIV = 0.71; AUC for syphilis = 0.84; AUC for gon-
orrhea = 0.79; AUC for chlamydia = 0.69). These stud-
ies enable individuals to comfortably predict their own 
risk of HIV and STIs from home. Given that HIV poses 
higher risks than other STIs, more research has focused 
on early detection and identification of HIV [7, 19, 20].

Our models show better performance in terms of pre-
diction. We conducted a subgroup analysis based on 
gender since the likelihood of contracting STIs differs 
between males and females due to differences in repro-
ductive system structures, aiming to improve our pre-
dictive model’s accuracy. Additionally, we carried out an 
interpretability analysis on our models to assist clinical 
practitioners in better understanding the models and 
asking more targeted questions (focusing on the top-
ranking features) during actual consultations and screen-
ing processes.

Nonetheless, our study presents several limitations: 
(1) While the ADASYN algorithm was employed for 
data balancing, which improved performance, it may 

introduce its own limitations. Specifically, ADASYN can 
potentially overgeneralize the minority class by creat-
ing synthetic samples that do not accurately represent 
the underlying distribution. This might lead to a model 
that is less effective in distinguishing between classes in 
real-world scenarios; (2) Factors influencing STIs may 
vary across different races. Furthermore, this study did 
not conduct external validation of the model on distinct 
datasets; hence, the model’s generalizability has not been 
tested; (3) The questionnaire data in the database lacks 
information on HIV and syphilis infection, rendering it 
impossible to predict associated risks.

To mitigate the aforementioned limitations, future 
research can implement the following improvements: 
(1) Explore and apply advanced data balancing tech-
niques that go beyond ADASYN, such as more sophisti-
cated versions of SMOTE algorithms [21] and Generative 
Adversarial Networks (GANs) [22, 23]. These methods 
should be carefully evaluated to ensure they do not over-
generalize the minority class and accurately represent 

Fig. 2  The CatBoost classifiers for predicting chlamydia(A), genital herpes(B), genital warts(C), gonorrhea(D), HPV(E) and overall STIs(F) based on the 
SHAP algorithm in female populations
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the underlying distribution, thereby improving the mod-
el’s real-world applicability and robustness; (2) Collect 
more data from diverse races and regions for external 
validation and generalization testing of the model; (3) In 
designing sexual behavior questionnaires, incorporate 
more data collection on various sexually transmitted dis-
eases to enhance the model’s overall predictive capacity 
for related infection risks.

In future research, the focus could be directed towards 
the prevention of STIs in high-risk populations and the 
intelligent management of STIs-affected individuals. On 
one hand, developing high-performance early screen-
ing models for STIs can expedite the identification of 
affected populations. On the other hand, for existing 
diagnosed STIs populations, personalized treatment 
methods employing artificial intelligence can be adopted 
to reduce management costs and enhance treatment suc-
cess rates across different population groups.

Conclusion
This study found that the CatBoost classifier achieved 
good classification performance in predicting the risk of 
different STIs among both male and female populations. 
The SHAP algorithm identified several important predic-
tors for each STI, with certain demographic character-
istics and sexual behaviors being consistently significant 
across different infections. These findings can inform tar-
geted prevention and intervention efforts to reduce the 
burden of STIs in the population.
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