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Abstract 

Background  Smoking is a risk factor for many chronic diseases. Multiple smoking status ascertainment algorithms 
have been developed for population-based electronic health databases such as administrative databases and elec-
tronic medical records (EMRs). Evidence syntheses of algorithm validation studies have often focused on chronic dis-
eases rather than risk factors. We conducted a systematic review and meta-analysis of smoking status ascertainment 
algorithms to describe the characteristics and validity of these algorithms.

Methods  The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. We 
searched articles published from 1990 to 2022 in EMBASE, MEDLINE, Scopus, and Web of Science with key terms such 
as validity, administrative data, electronic health records, smoking, and tobacco use. The extracted information, includ-
ing article characteristics, algorithm characteristics, and validity measures, was descriptively analyzed. Sources of het-
erogeneity in validity measures were estimated using a meta-regression model. Risk of bias (ROB) in the reviewed 
articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool.

Results  The initial search yielded 2086 articles; 57 were selected for review and 116 algorithms were identified. 
Almost three-quarters (71.6%) of algorithms were based on EMR data. The algorithms were primarily constructed 
using diagnosis codes for smoking-related conditions, although prescription medication codes for smoking treat-
ments were also adopted. About half of the algorithms were developed using machine-learning models. The pooled 
estimates of positive predictive value, sensitivity, and specificity were 0.843, 0.672, and 0.918 respectively. Algorithm 
sensitivity and specificity were highly variable and ranged from 3 to 100% and 36 to 100%, respectively. Model-based 
algorithms had significantly greater sensitivity (p = 0.006) than rule-based algorithms. Algorithms for EMR data had 
higher sensitivity than algorithms for administrative data (p = 0.001). The ROB was low in most of the articles (76.3%) 
that underwent the assessment.

Conclusions  Multiple algorithms using different data sources and methods have been proposed to ascertain smok-
ing status in electronic health data. Many algorithms had low sensitivity and positive predictive value, but the data 
source influenced their validity. Algorithms based on machine-learning models for multiple linked data sources have 
improved validity.
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Background
Electronic health databases, including electronic medi-
cal records (EMRs) and administrative data, contain 
routinely-collected information that is widely used for 
health research [1, 2] even though they were not origi-
nally intended for this purpose. EMRs typically include a 
diverse amount of information about the patient, includ-
ing medical history, family history, immunization status, 
laboratory test results, and radiology images [3]. Admin-
istrative data also include large amounts of information, 
including insurance enrollment dates, inpatient and out-
patient contacts, and vital statistics [4]. Data quality is an 
important consideration when using electronic health 
databases for research, given that the data are used for 
secondary purposes.

Smoking is responsible for more than 8 million deaths 
worldwide each year [5] and is the leading cause of pre-
ventable diseases and premature deaths [6]. Smoking is 
a significant risk factor for cancers, cardiovascular dis-
eases, and respiratory diseases. Valid measurement of 
smoking status contributes to accurate estimates from 
risk prediction models and other outcome studies about 
these diseases [7]. Valid smoking status measures can 
also aid in accurately estimating disease trends at the 
population level.

Population-based surveys are typically used to cap-
ture information about smoking status. However, they 
are expensive to conduct and are not always conducted 
on a routine basis [8]. Routinely collected administrative 
data often contain indirect information about smoking 
status, such as diagnosis codes for related diseases (e.g., 
chronic bronchitis) and substance use disorders. EMRs 
capture information on smoking status through free-text 
information about one’s health history as well as diagno-
sis codes. Therefore, many studies have investigated the 
validity of electronic health databases, including admin-
istrative databases and EMRs, for capturing information 
on smoking status. For example, a study based on Medi-
care claims data reported smoking status ascertainment 
algorithms with limited sensitivity but very high specific-
ity [9]. In a different study, sensitivity estimates of algo-
rithms for EMRs within an integrated healthcare system 
varied widely by years of data used [10]. However, the 
positive predictive value (PPV) consistently remained 
high.

To date, there have been few, if any studies that have 
systematically examined validation studies about smok-
ing status in electronic health databases. Summary infor-
mation about smoking status ascertainment algorithms 
might be used to develop recommendations about the 
optimal algorithm(s) to use and opportunities for further 
research. The latter is particularly timely, given increas-
ing interest in novel approaches to mine new information 

from electronic health databases using machine-learning 
methods [11–13].

Given this background, the purpose of our study was to 
synthesize information about smoking status algorithms 
developed for electronic health databases. The objectives 
were to describe smoking status algorithm characteris-
tics, methods to construct the algorithms, and estimates 
of their validity. A systematic review methodology was 
used to provide a comprehensive summary of the algo-
rithms to ascertain smoking status [14]. Meta-analysis 
[15] of algorithm validity measure estimates was con-
ducted to assess the potential sources of heterogeneity in 
them.

Methods
We used the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guideline for this 
review [16] (see Additional file 4). This guideline is widely 
recognised for ensuring rigorous and consistent report-
ing in systematic reviews and meta-analyses [17].

Data sources and search strategy
EMBASE, MEDLINE, Scopus, and Web of Science were 
searched from 1990 to November 22, 2022. The target 
sources were English-language peer-reviewed journal 
articles. We excluded review articles. The search strategy 
was developed by the research team in consultation with 
an experienced university librarian. The search strategy 
was based on three concepts, each built with specific sets 
of keywords. The concepts are validity measures (valid*, 
quality, accuracy, sensitivity, specificity), electronic 
health data (electronic medical record*, electronic health 
record*, administrative health data, administrative data, 
health care data, administrative billing record*, admin-
istrative claims data, claims data, hospital data, hospital 
discharge data, medicare data, medicaid data), and smok-
ing status (smok*, tobacco). The * at the end of the words 
valid, record, and smok indicates the use of truncation 
to capture variant endings. The keywords within each 
set were connected with OR and the concepts were con-
nected with AND. Article titles, abstracts, and keywords 
were reviewed to identify potentially relevant articles. 
The detailed search strategy implemented for each data-
base is available in Additional file 1.

Study selection
The titles, abstracts, and keywords of the selected arti-
cles were uploaded to Rayyan [18] for deduplication 
and screening for inclusion. An article was included if 
it reported the results of a validation study for one or 
more smoking status ascertainment algorithms devel-
oped for EMRs or administrative health data (e.g., hospi-
tal records, physician claims, prescription drug records). 
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There were no restrictions on geography of the data or 
population characteristics (e.g., age, sex). To ensure an 
acceptable level (> 80%) [19] of agreement between the 
two reviewers who conducted the screening, two rounds 
of abstract and title screening training were undertaken; 
each training session was conducted on a random sample 
of 10% of the identified articles. Both reviewers indepen-
dently screened all the articles. Inter-reviewer agreement 
was assessed with Cohen’s kappa [20]. Disagreements 
on study selection for full-text review were resolved by 
consensus. Articles were retained when there was uncer-
tainty regarding the eligibility to be included based on 
title, abstract, and keywords alone. The final decision 
about the inclusion of an article in this study was made 
with full text review of the articles identified based on 
titles, abstracts, and keywords screening. The reference 
lists of the selected articles were searched for additional 
articles.

Data extraction
Two reviewers independently extracted data from two 
randomly selected articles in a training session to main-
tain high inter-reviewer reliability [21]. Disagreements on 
data extraction were resolved by consensus and discus-
sion between the reviewers. The remainder of the articles 
were equally distributed to the two reviewers for data 
extraction. We extracted information from the selected 
studies about article characteristics, algorithm character-
istics, and algorithm validation estimates.

Article characteristics included year of publication, 
geographical data source, whether data from multiple 
jurisdictions were used, and journal discipline. The latter 
was determined based on subject terms from the United 
States National Library of Medicine catalog in PubMed.

Algorithm characteristics included International Statis-
tical Classification of Diseases and Related Health Prob-
lems (ICD) codes, procedure or intervention codes, data 
source, data structure, and the use of a predictive model 
to develop the algorithm. The algorithm data source was 
categorized as EMR or administrative data. Data struc-
ture was classified as structured (e.g., diagnosis codes), 
unstructured text (e.g., clinical notes), or both structured 
and unstructured. Algorithms were classified as model-
based or deterministic/rule-based on the basis of the 
method of construction [22]. Model-based algorithms 
implemented predictive statistical and/or machine-learn-
ing models (e.g., support vector machine). Rule-based 
approaches relied on measuring the type and frequency 
of diagnosis/billing codes in the records of an individual.

Information about the validation data source and 
validity measures (e.g., sensitivity, specificity) was also 
extracted from the articles. For model-based algo-
rithms, the validity measure estimates for test data 

were extracted. The validation source was classified 
as self-reported data (e.g., survey), chart review data 
(e.g., patient charts reviewed to extract smoking status 
based on assessments by clinical or domain-knowledge 
experts), and clinical data (e.g., blood test results). The 
reported validity measures and their respective estimates 
and 95% confidence intervals (CI) were recorded. If esti-
mates were reported for more than one sub-group or cat-
egory (e.g., by demographic characteristics, by years of 
data), only the overall value of the validity measure was 
extracted. Finally, we assessed whether the Standards for 
Reporting Diagnostic Accuracy (STARD) criterion [23] 
about the number of measures recommended for report-
ing were fulfilled.

Statistical analysis
We analyzed the extracted data at both the study level 
and algorithm level. At the study level, data about the 
articles were descriptively analyzed using frequencies 
and percentages. At the algorithm level, we conducted 
descriptive analyses overall, and then stratified by algo-
rithm characteristics. The distributions of algorithm 
validity measures were visually summarized using box-
plots; the median and interquartile range (IQR) were 
used to describe the data.

Sources of heterogeneity in algorithm validity esti-
mates, including algorithm characteristics and arti-
cle characteristics, were examined using a three-level 
meta-regression model [24]. The first level accounts for 
sampling error, the second level examines algorithm 
characteristics, and the third level considers article char-
acteristics. The structure of this model is depicted in 
Fig. 1. The random deviations at each level were assumed 
to follow a normal distribution with zero mean and con-
stant variance.

Standard errors for the reported estimates were calcu-
lated from CIs or number of positive/negative cases in 
the validation data [25]. Likelihood ratio (LR) tests were 
conducted to compare three-level models against their 
two-level counterparts [26]. Null models were fitted to 
calculate pooled estimate and variance in the reported 
validity measures. To further investigate the sources of 
heterogeneity in these estimates, predictor variables were 
included in the model. At level 2, data source (1 = EMRs, 
0 = Administrative) and the use of a predictive model 
were included in the model (1 = Yes, 0 = No) to account 
for algorithm characteristics. The variables included at 
level 3 were article characteristics: reference standard 
(1 = Chart review/clinical data, 0 = Self-report), clinical 
population (1 = Yes (e.g., HIV patients), 0 = No), study 
population age (1 = Restricted to only a specific age-
group (e.g., 15–45 years [27]), 0 = all ages), and country of 
data origin (1 = US,0 = non-US). Data structure was not 
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included in the model since it has a strong association 
with data source; administrative data are generally struc-
tured while EMRs can be either structured or unstruc-
tured. Test of residual heterogeneity was conducted to 
find if the heterogeneity not explained by the models is 
significant or not [28]. To assess model fit, reduction in 
variance estimates for the models with predictors relative 
to the initial random-effects pooling models [28] were 
calculated. An R package metafor [29] was used to con-
duct the meta-analysis.

Risk of bias assessment
The articles included in the meta-analysis underwent 
a risk of bias (ROB) assessment, utilizing the Quality 
Assessment of Diagnostic Accuracy Studies-2 (QUA-
DAS-2) tool [30]. This tool comprises four domains that 
evaluate patient selection, index test, reference stand-
ard, and flow of patients through the study and timing 
of the index test(s). Each domain includes specific sign-
aling questions to aid in determining the ROB. For each 
article, the ROB was evaluated as high, low, or unclear 
for each domain. A low ROB was assigned if all signal-
ing questions within a domain were answered affirma-
tively (i.e., best practices were followed). Conversely, a 
high or unclear ROB was assigned if any signaling ques-
tion received a negative or unclear response. To ensure 
accuracy, two reviewers independently performed the 
ROB assessment on a 5% random training sample of eli-
gible articles. Discrepancies between the reviewers were 
addressed by a third reviewer, to reach consensus. The 
remaining articles were then evenly distributed between 
the two reviewers for ROB assessment.

A sensitivity analysis of the meta-regression models 
was conducted to assess robustness of the synthesized 
results. The sensitivity analysis excluded the articles 
with the presence of high/unclear ROB in any of the four 
domains of QUADAS-2. A publication bias test was con-
ducted by regressing the null model residuals on their 
corresponding variance estimates [31].

Results
Search results
As shown in Fig. 2, a total of 4335 articles were retrieved 
from the literature search. After removing duplicates, 
the titles and abstracts of 2086 studies were screened 
for study inclusion. The screening process left 70 articles 
for full-text review. Cohen’s kappa for study inclusion/
exclusion was 0.97 (95% [CI]: 0.93, 1.00). After full-text 
review, 20 articles were removed. An additional seven 
articles were included after the review of reference lists 
of the remaining 50 articles. Therefore, a total of 57 arti-
cles were included in our systematic review (see Addi-
tional file 2).

Article characteristics
Only one (1.8%) of the included articles was published 
before 2000. The majority of the articles (32, 61.4%) were 
published after 2014 (Table 1). In most of the articles (44, 
77.2%), algorithms were constructed using US data. A 
large number (37, 64.9%) of articles used clinical popu-
lation (e.g., lung cancer patients) data. Very few articles 
(8, 14.0%) reported the use of data from more than one 
jurisdiction. Overall, the largest number of articles (24, 
42.1%) were published in medical informatics/electronic 
data journals. The majority of the studies (27, 47.4%) vali-
dated algorithms using self-report data, followed by (26, 
45.6%) chart review data, and (4, 7.0%) clinical data (e.g., 
serum cotinine in the blood). Only three (5.3%) articles 
reported that the study population included exclusively a 
single biological sex group.

Characteristics of the identified algorithms
The 57 articles reported on validity estimates for 116 
algorithms. Overall, 50 (43.1%) algorithms used ICD 
codes; of this number only 10 used the 10th revision 
(e.g., tobacco dependence syndrome, personal history 
of tobacco use disorder) of this classification system and 
the remainder used the 9th revision (e.g., tobacco use 

Fig. 1  Three-level meta-regression model
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Fig. 2  Flowchart of the study selection process

Table 1  Summary of article characteristics (n = 57)

Characteristic % Article Reference

Year of publication
   ≥ 2015 61.4 [9, 12, 27, 32–63]

   < 2015 38.6 [10, 64–84]

Geographical location of data source
  US 77.2 [9, 10, 27, 33–40, 42–48, 50–55, 57, 59–61, 66–73, 75–83]

  Australia 5.3 [64, 65, 74]

  UK 3.5 [49, 81]

  Canada 3.5 [41, 56]

  Other 10.5 [12, 32, 46, 58, 62, 84]

Clinical population
  Yes 64.9 [27, 33, 35, 36, 38, 39, 41–48, 52, 53, 55–58, 60–63, 66–68, 70, 

72–74, 76–78, 82, 83]

  No 35.1 [10, 12, 32, 34, 37, 40, 49–51, 54, 59, 64, 65, 69, 71, 75, 79–81, 84]

Data from multiple jurisdictions
  Yes 14.0 [43, 44, 48, 50, 68, 70, 72, 73]

  No 86.0 [9, 10, 12, 27, 32–42, 45–47, 49, 51–67, 71, 74–84]

Journal discipline
  Medical informatics/Electronic data 42.1 [27, 34, 41, 45, 47–55, 57, 60, 66, 67, 73, 74, 76, 78–80, 83]

  Medicine/Clinical 29.8 [35, 36, 38–40, 43, 44, 46, 56, 58, 59, 64, 65, 70, 71, 75, 77]

  Public health and epidemiology 10.5 [9, 12, 32, 37, 42, 81]

  Health services 8.8 [62, 63, 68, 72, 82]

  Substance-related disorders 5.3 [10, 61, 69]

  Biomedical 3.5 [33, 84]
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complicating pregnancy, toxic effect of tobacco). Only 11 
(9.5%) algorithms used procedure or intervention codes 
such as advisement to quit and screening for tobacco 
use followed by an intervention (i.e., smoking cessation 
program).

Almost three-quarters of the algorithms (83, 71.6%) 
were constructed using EMR data; the remaining 33 
(28.4%) algorithms were constructed using administra-
tive data. Nearly half of the algorithms (54, 46.5%) used 
structured data such as diagnosis codes, while unstruc-
tured EMR data were used to construct 41 (35.3%) algo-
rithms. Only 21 (18.1%) algorithms were based on both 
structured and unstructured data.

More than half of the algorithms (61, 52.6%) were 
developed using rule-based methods, such as the pres-
ence of any tobacco-related ICD code or a procedure/
intervention code in any data source, or the presence of 
any smoking-related information in inpatient records 
and/or outpatient medical claims within a defined period 
of time. The model-based algorithms (n = 55) were 
almost exclusively (53, 96.4%) developed using EMR 
data. Largest number of the model-based algorithms (24, 
43.6%) were developed using natural language processing 
methods. Specifically, these algorithms were developed 
by extracting smoking-related information from EMRs 
and constructing features relevant to smoking status (e.g., 
former smoker, current smoker), frequency of smoking 

(e.g., number of cigarettes per day), and temporal infor-
mation relevant to date or duration (e.g., smoked for 
10 years). A total of 16 (29.1%) model-based algorithms 
were developed using support vector machine models. 
The remainder (15, 27.3%) used statistical or machine-
learning models, such as logistic regression, naïve Bayes, 
Bayesian networks, neural networks, deep learning meth-
ods, and decision trees.

Validity measures
Algorithm validity measures reported are depicted in 
Fig.  3. The number of validation measures reported 
per algorithm had a median value of 3.0 (IQR = 2). The 
STARD recommendation of four measures was met for 
slightly less than half (45.7%) of the identified algorithms. 
The three most common validity measures were sen-
sitivity (80, 68.9%), specificity (61, 52.6%), and PPV (58, 
50.0%). Area under the receiver operating characteristic 
(ROC) curve (10, 8.6%), true positives (12, 10.3%), and 
true negatives (14, 12.1%) were the least reported valid-
ity measures. The median (IQR) for PPV, sensitivity, and 
specificity were 88.3% (14.5%), 77.5% (36.5%), and 97.0% 
(12.0%) respectively.

Figure  4 indicates a negatively skewed distribution of 
specificity estimates for algorithms constructed using 
administrative data or EMRs, but not for sensitivity and 
PPV. The median PPV (91.0%) and sensitivity (86.0%) of 

Fig. 3  Percent (%) of smoking status algorithms characterized by validity measures (n = 116)
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the algorithms based on EMR data was higher than for 
administrative data (PPV = 81.5%, sensitivity = 50.0%). 
However, median specificity (94.4%) estimate was lower 
for EMR data than for administrative data (97.1%). For 
EMR data, variability in estimates of PPV (IQR = 10.5%) 
and sensitivity (IQR = 15.0%) were lower than for 
administrative data (IQR for PPV = 23.0% and sensitiv-
ity = 42.0%). However, variation in estimates of specificity 
for EMR data was about twice that of administrative data 
(IQR 15.2 and 9.0%, respectively).

Figure  5 shows that the distribution of sensitivity was 
negatively skewed irrespective of data structure, while 
this was not the case for PPV and specificity. Median 
PPV and sensitivity estimates for algorithms based on 
unstructured data (PPV = 91.0%, sensitivity = 88.0%, 
specificity = 92.5%) were higher than the estimates for 
algorithms based on structured data (PPV = 80.0%, sen-
sitivity = 62.5%, specificity = 97.1%). Algorithms devel-
oped using both structured and unstructured data had 
PPV and sensitivity estimates similar to algorithms 
based on unstructured data alone (PPV = 91.0%, sensi-
tivity = 93.0%, specificity = 74.0%). The estimated valid-
ity of algorithms based on unstructured data showed 
less variation (IQR for PPV = 8.2%, sensitivity = 11.0%, 
and specificity = 9.5%) than algorithms based on struc-
tured data (IQR for PPV = 22.0%, sensitivity = 46.5%, and 

specificity = 7.5%) or that used a combination of struc-
tured and unstructured data (IQR for PPV = 11.0%, sensi-
tivity = 10.0%, and specificity = 23.9%).

Regardless of the approach (model-based or rule-
based) used to create an algorithm, the distributions of 
sensitivity and specificity estimates were highly skewed; 
most of the observations were below their respective 
average estimates (Fig.  6). Mean sensitivity was 87.3% 
for model-based algorithms and 57.1% for rule-based 
algorithms, while mean specificity was 83.9% for model-
based algorithms and 90.5% for rule-based algorithms. 
The median sensitivity for model-based algorithms and 
rule-based algorithms were 90.0 and 63.0%, respectively. 
The median PPV and specificity of the algorithms based 
on predictive models were 87.5 and 88.0% respectively, 
while algorithms based on deterministic methods had 
median PPV and specificity of 89.5 and 97.0%, respec-
tively. Variation in PPV (IQR = 9.2%) and sensitivity 
(IQR = 12.8%) estimates of model-based algorithms was 
lower than for rule-based algorithms (PPV IQR = 20.5%, 
sensitivity IQR = 47.5%). Variation in specificity estimates 
(IQR = 25.4%) was higher for model-based algorithms 
than rule-based algorithms (IQR = 9.0%).

Estimates of PPV (47 from 20 articles), sensitivity (69 
from 34 articles), and specificity (57 from 28 articles) 
with necessary information to calculate standard error 

Fig. 4  Distribution of selected algorithm validity measures, stratified by algorithm data source. Note: The centre horizontal line within the box 
represents the median (50th percentile); upper and lower bounds of the box indicate the 25th and 75th percentiles; dashed lines connect 
the maximum and minimum values; circles represent outliers. PPV = positive predictive value
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Fig. 5  Distribution of selected algorithm validity measures, stratified by algorithm data structure. Note: The centre horizontal line within the box 
represents the median (50th percentile); upper and lower bounds of the box indicate the 25th and 75th percentiles; dashed lines connect 
the maximum and minimum; circles represent outliers. PPV = positive predictive value

Fig. 6  Distribution of selected algorithm validity measures, stratified by use of predictive model in algorithm construction. Note: The centre 
horizontal line within the box represents the median (50th percentile); upper and lower bounds of the box indicate the 25th and 75th percentiles; 
dashed lines connect the maximum and minimum with the box; circles represent outliers. PPV = positive predictive value
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(e.g., CI) were included in the meta-analysis. Three-level 
model provided significantly better fits compared to 
two-level models for all three measures PPV (LR = 7.75; 
p = 0.005), sensitivity (LR = 10.180; p = 0.001), and speci-
ficity (LR = 7.63; p = 0.006). The pooled estimates from 
the null three-level meta-regression models were 84.0% 
(95% [CI]: 79.0–90.0), 67.0% (95% [CI]: 59.0–76.0), and 
92.0% (95% [CI]:87.0–97.0) for PPV, sensitivity, and 
specificity, respectively. The estimated variances of PPV, 
sensitivity, and specificity were 0.02, 0.07, and 0.03, 
respectively. The largest portion of estimated variance 
was attributable to level 2 in case of sensitivity (64.1%) 
and specificity (79.7%) followed by level 3 (sensitiv-
ity = 35.8%, specificity = 20.3%). However, level 3 (54.8%) 
accounted for the largest share of estimated variance 
in PPV followed by level 2 (45.2%). The residual regres-
sions tests (deviation of the intercept from zero) did not 
indicate the presence of publication bias in the reported 
estimates of PPV (p = 0.753), sensitivity (p = 0.471), and 
specificity (0.124).

Algorithms for EMRs had significantly higher 
(p  = 0.001) sensitivity estimates than algorithms for 
administrative data (Table  2). The model-based algo-
rithms produced significantly higher sensitivity estimates 

than their rule-based counterparts (p  = 0.006). The 
articles including only individuals with certain clinical 
conditions (e.g., HIV patients) had lower estimates of 
specificity than articles that used data for general popu-
lations (p = 0.020). The articles that used data from the 
US reported significantly larger specificity estimates than 
the articles based on non-US data (p = 0.002). None of 
the algorithm characteristics and article characteristics 
included in the model were significantly associated with 
PPV estimates.

The tests of residual heterogeneity in the models 
for all three measures suggest statistically significant 
amounts of unexplained heterogeneity in their esti-
mates (p < 0.0001). The models with predictors had 
lower variances compared to the initial random-effects 
pooling model by 41.1 and 16.0%, respectively, for sen-
sitivity and specificity. However, the estimated PPV 
variance remained unchanged in the null model and the 
model with the predictors. The predictors included in 
our models were able to explain the variability in sen-
sitivity and specificity better than the respective null 
models. However, the predictors did not add any value 
when explaining variation in the PPV estimates.

Table 2  Meta-regression model parameter estimates (SE) for validity measures of PPV, sensitivity and specificity

Boldface font denotes a statistically significant estimate; EMR electronic medical record, SE standard error, PPV positive predictive value

Variable Validity measure

PPV Sensitivity Specificity

Parameter estimate (SE) P-value Parameter estimate (SE) P-value Parameter estimate (SE) P-value

Data source
  EMR −0.076 (0.073) 0.304 0.251

(0.076)
0.001 −0.057

(0.054)
0.297

  Administrative Ref Ref Ref

Predictive model
  Yes −0.017 (0.076) 0.826 0.195

(0.069)
0.006 −0.094

(0.052)
0.078

  No Ref Ref Ref

Reference standard
  Chart review/clinical data 0.095

(0.072)
0.198 0.086

(0.082)
0.297 −0.025

(0.059)
0.672

  Self-report Ref Ref Ref

Clinical population
  Yes 0.108 (0.063) 0.144 −0.096 (0.081) 0.239 − 0.140 (0.058) 0.020

  No Ref Ref Ref

Study population age
  Restricted 0.133(0.067) 0.054 −0.016(0.062) 0.793 0.035(0.045) 0.441

  All ages Ref Ref Ref

Country of data origin
  US −0.006(0.072) 0.937 − 0.083(0.079) 0.304 0.195(0.059) 0.002

  non-US Ref Ref Ref
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The results of the ROB assessment are summarized 
in Table 3. In total, 38 articles from the meta-regression 
models were evaluated for ROB using the QUADAS-2 
tool. The majority of these articles (29, 76.3%) were 
deemed to have a low ROB across all four domains. High 
ROB was observed in three articles, with one in the index 
test domain and two in the flow and timing domain. 
Additionally, ROB was unclear in four articles in the ref-
erence standard domain and three articles in the patient 
selection domain.

The PPV, sensitivity, and specificity meta-regression 
models, respectively, had two articles (containing 4 algo-
rithms), nine articles (containing 14 algorithms), and five 
articles (containing 5 algorithms) with high/unclear ROB. 
A sensitivity analysis that removed these articles with 
potential bias produced results consistent with the pri-
mary meta-analysis (Additional file 3).

Discussion
Smoking status is an important covariate in many disease 
risk prediction models and trends in smoking status are 
of interest in epidemiologic studies [85–87]. Electronic 
health databases can be leveraged to develop predic-
tion models [88] and surveillance estimates that include 
smoking status information. Validation studies are 
important to assess the quality of electronic health data 
to ascertain a variety of individual characteristics, includ-
ing smoking status [89]. Validation studies of electronic 
health data sources have been synthesized for chronic 
diseases such as diabetes [90], cancer [91], and social 

determinants of health (e.g., ethnicity, occupation) [92], 
but the validity of smoking status algorithms constructed 
from electronic health databases is a gap in the literature.

We found that a large number of validation studies for 
smoking status algorithms used electronic health data 
from the US; a similar trend was reported in systematic 
reviews for other validation studies, such as for comor-
bidity indices [93] and kidney disease [94]. Canadian 
provinces and territories collect comprehensive admin-
istrative health data [95]. Additionally, many provinces 
collect EMR data through the Canadian Primary Care 
Sentinel Surveillance Network [96] or other activities 
[97]. However, this study identified only two articles that 
used Canadian data. Similarly, we found very few arti-
cles used data from European countries, including the 
Scandinavian countries, which also have comprehensive 
administrative and EMR data [98, 99]. The vast major-
ity of the algorithms were constructed with data from a 
single jurisdiction, potentially limiting the transportabil-
ity of these algorithms across jurisdictions. At the same 
time, this finding is not unexpected, given that it can be 
challenging to find a comparable validation data source 
in more than one jurisdiction. A large number of stud-
ies used medical chart review to validate the algorithms, 
a result comparable to a systematic review of algorithms 
for obesity [100].

The median number of validity measures reported per 
algorithm was below the STARD recommendation of 
at least four measures. Overall, the sensitivity estimates 
were lower than the estimates of PPV and specificity. This 

Table 3  Risk of bias (ROB) assessment results [9, 10, 12, 33–38, 40–45, 48, 50, 51, 53–55, 57, 58, 60, 63, 64, 66, 68–70, 72–75, 77, 78, 80, 
83]
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finding is in line with a study that reviewed validation 
studies of algorithms to identify obesity in administra-
tive databases [100]. Similar to other reviews focusing on 
chronic conditions [101], infections [102], and nonmedi-
cal opioid use [103]; considerable variation was found in 
the estimates for the reported algorithm validity meas-
ures such as PPV, sensitivity, and specificity overall and 
by selected algorithm characteristics. The model-based 
algorithms tended to have less variable PPV and sen-
sitivity estimates than the rule-based algorithms. This 
suggests the model-based algorithms had more consist-
ent performance in terms of accurately predicting posi-
tive cases (i.e., PPV) and capturing true positives (i.e., 
sensitivity). However, the model-based algorithms were 
more variable in specificity estimates compared to the 
rule-based algorithms. This may suggest the complex-
ity of model-based algorithms affected specificity in dif-
ferent study-specific scenarios. Model-based smoking 
status ascertainment algorithms had better performance 
than rule-based algorithms, which is in contrast to find-
ings from a rheumatoid arthritis validation study that 
utilised these two approaches and found similar predic-
tive performance [104]. Nevertheless, another study 
demonstrated that model-based algorithms can improve 
sensitivity and specificity estimates over the estimates 
from rule-based algorithms for classifying carotid endar-
terectomy indication using physician claims and hos-
pital discharge data [105]. Residual confounding due to 
data source may remain in the summarized relationship 
between validity measures and the use of a predictive 
model. This is particularly noteworthy, because a major-
ity of model-based algorithms were constructed using 
EMR data. These data capture more detailed and compre-
hensive clinical information compared to administrative 
data, resulting in better performance than the rule-based 
algorithms that relied on administrative data. The model 
for sensitivity suggested significant difference in algo-
rithms for EMRs and administrative data, in contrast 
to findings from an earlier study to predict binary out-
comes such as 1 year mortality and hospital readmission 
[106]. The specificity model indicated considerably lower 
estimates for algorithms belonging to articles focus-
ing only on clinical population and higher estimates for 
articles using US data. Class imbalance may be partially 
responsible for these findings on specificities [107]. No 
significant difference was detected in the results of PPV 
model. Overall, the fitted models with predictors did not 
adequately explain heterogeneity in validity measure esti-
mates. This finding may be attributed to factors identified 
as sources of heterogeneity, such as the use of alternative 
coding methods and misclassified diagnosis by examin-
ing medications prescribed for different purposes, in the 
studies included in our meta-analysis [108]. Many articles 

in our meta-analysis had low ROB, but a review of algo-
rithms for neurodevelopmental disorders had contrasting 
results [109]. The key findings from the meta-analysis did 
not change after a sensitivity analysis that excluded arti-
cles considering the ROB. A similar result was observed 
in a meta-analysis of articles using machine-learning 
to predict the spread of breast cancer to armpit lymph 
nodes [110]. Our analysis did not find strong evidence of 
publication bias in the pooled estimates of validity meas-
ures from null models. This finding should be interpreted 
with caution considering the limitations of linear regres-
sion [111]. For example, the relationship between residu-
als and variances may be non-linear, which can lead to 
inaccurate assessment of publication bias.

Strengths and limitations
The strengths of this systematic review and meta-anal-
ysis include the breadth of citation databases that we 
searched, the wide variety of article characteristics, and 
the detailed analysis of extracted information at the algo-
rithm level. We identified statistically significant sources 
of variation in the estimates of sensitivity (data source 
and use of predictive model) and specificity (patient 
characteristics and country of data origin). However, we 
recognize that this study is not without limitations. Arti-
cles published in languages other than English and grey 
literature, such as government reports and graduate dis-
sertations, were excluded. These exclusions may affect 
the generalizability of our findings. To mitigate this gap, 
the reference lists of the included articles were searched 
for additional articles. A large portion of the variation in 
the reported estimates of PPV, sensitivity, and specificity 
remained unexplained in the meta-regression models. 
To evaluate the reliability of the results of these models, 
a sensitivity analysis was performed incorporating the 
findings from the ROB assessment.

Conclusions
Evidence syntheses of algorithm validation studies have 
often focused on chronic or infectious disease case ascer-
tainment and social determinants of health [90–92]. This 
study contributes to the body of literature about valida-
tion studies and examines a relatively unexplored area 
of behavioral risk factor algorithms for electronic health 
databases.

We found that numerous algorithms have been devel-
oped to identify smoking status in electronic health data-
bases. The identified algorithms vary in terms of data 
source, data structure, and methods of construction. In 
general, the algorithms had high specificity and low sen-
sitivity when predicting smoking status, although there is 
evidence that sensitivity can be improved by using EMR 
data and predictive models to construct the algorithms.
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A number of opportunities exist to develop algorithms 
to measure smoking status using population-based elec-
tronic health data. For example, combining multiple 
data sources, including EMR and administrative data, 
may produce algorithms with high sensitivity [112]. The 
breadth of the longitudinal information [22] available in 
the electronic health databases can be utilized to develop 
algorithms. Methods such as longitudinal discriminant 
analysis [113] and semiparametric mixed-effects model 
[114] can be used to construct algorithms based on lon-
gitudinal data. The application of ensemble machine 
learning classification models and use of large language 
models (LLMs) remained unexplored in this line of 
research. Ensemble machine learning involves combining 
individual models to improve overall predictive perfor-
mance. For example, random forest ensemble classifi-
ers [115, 116] may be used to identify smoking status in 
electronic health databases. These classifiers may have 
reduced potential over-fitting of the model and improve 
performance measures relative to decision trees [117]. 
LLMs are trained deep-learning models that understands 
and generates text in a human-like fashion [118]. These 
models can be deployed to identify smoking status from 
text-based unstructured EMR data.
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