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Abstract 

Background  Lyme disease is one of the most commonly reported infectious diseases in the United States (US), 
accounting for more than 90% of all vector-borne diseases in North America.

Objective  In this paper, self-reported tweets on Twitter were analyzed in order to predict potential Lyme disease 
cases and accurately assess incidence rates in the US.

Methods  The study was done in three stages: (1) Approximately 1.3 million tweets were collected and pre-processed 
to extract the most relevant Lyme disease tweets with geolocations. A subset of tweets were semi-automatically 
labelled as relevant or irrelevant to Lyme disease using a set of precise keywords, and the remaining portion were 
manually labelled, yielding a curated labelled dataset of 77, 500 tweets. (2) This labelled data set was used to train, 
validate, and test various combinations of NLP word embedding methods and prominent ML classification models, 
such as TF-IDF and logistic regression, Word2vec and XGboost, and BERTweet, among others, to identify potential 
Lyme disease tweets. (3) Lastly, the presence of spatio-temporal patterns in the US over a 10-year period were studied.

Results  Preliminary results showed that BERTweet outperformed all tested NLP classifiers for identifying Lyme 
disease tweets, achieving the highest classification accuracy and F1-score of 90% . There was also a consistent pattern 
indicating that the West and Northeast regions of the US had a higher tweet rate over time.

Conclusions  We focused on the less-studied problem of using Twitter data as a surveillance tool for Lyme disease 
in the US. Several crucial findings have emerged from the study. First, there is a fairly strong correlation between clas-
sified tweet counts and Lyme disease counts, with both following similar trends. Second, in 2015 and early 2016, 
the social media network like Twitter was essential in raising popular awareness of Lyme disease. Third, counties 
with a high incidence rate were not necessarily related with a high tweet rate, and vice versa. Fourth, BERTweet can 
be used as a reliable NLP classifier for detecting relevant Lyme disease tweets.
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Background
Lyme disease has been one of the most reported infec-
tious diseases in the United States (US) and accounts for 
over 90% of all vector-borne diseases in North America 
[1–4]. Since 1991 Lyme disease has become an officially 
notifiable disease in the US and is reported to the Centers 
for Disease Control and Prevention (CDC). A study try-
ing to evaluate the economic burden of Lyme disease in 
some high-incidence states within the US estimated the 
annual cost to be nearly 1 billion US dollars, not includ-
ing suspected, undiagnosed, or nonacute cases [5, 6].

Lyme disease is a vector-borne disease caused by 
infection with the bacterium Borrelia burgdorferi [7, 
8]. The vector responsible for transmitting to humans 
is Ixodes-type ticks [9, 10]. Historically, the distribution 
of ticks in North America was limited to the eastern 
United States. Ever since then, the tick population has 
increased and has spread to Southern Canada, where 
they are increasingly gaining ground [11–13]. The type 
of ticks differs depending on the geographical location. 
Due to global warming, North America will be facing 
more and more warm winters. Since ticks are poikilo-
thermic, with the life stages of each species requiring 
specific sets of environmental conditions for success-
ful development and survival, they are sensitive for 
ambient abiotic conditions [14–16]. So, it is normal to 
expect an increase in the distribution of ticks and the 
incidence of tickborne diseases such as Lyme disease 
[12, 17, 18]. In North America, there are two differ-
ent species of ticks that have been proven to transmit 
Lyme disease, and their prevalence varies depending 
on the location. The most predominate specie of ticks 
is the Ixodes scapularis species, also called deer ticks 
or black-legged ticks, is found in Northeast and North 
Central of the US, as well as the Central and Eastern 
parts of Canada [19, 20]. The second most common 
is Ixodes pacificus ssp, which is mostly found in the 
western United States and British Columbia, Canada 
[9, 21–24]. Lyme disease symptoms are extensive, with 
typically some dermatological, musculoskeletal, neu-
rological, and cardiac manifestations, but the hallmark 
of the disease clinical manifestation is a target shaped 
erythema migrans known as “bull’s-eye” rash, which 
appears where the tick has bitten in 70− 80% of cases 
[7, 25–28]. This itching can be accompanied by extreme 
fatigue, headaches, muscle weakness, or dizziness 
within 30 days of the bite [8, 24, 29]. Without an early 
and appropriate antibiotic treatment, the symptoms 
can be persistent for an unknown period and require 

more complex therapy [4]. However, even with proper 
antibiotic treatment, 20% of the cases will transit to the 
late-stage infection called the chronic phase [30–33]. 
It has been reported that the chronic phase symptoms 
vary depending on geographical regions, with Lyme 
arthritis being the most common form in the US [23]. 
The age distribution of Lyme disease in the US is typi-
cally bimodal, with peaks for 5-15 years old and 45-55 
years old [7, 26, 29]. Lyme borreliosis infection rates 
appear to be higher among men under 60 years of age, 
but otherwise are equal between the sexes, with most 
cases occurring in June and July [31, 34, 35].

According to CDC, each year in the US, there are 
approximately 30,000 Lyme disease cases reported 
through the Nationally Notifiable Disease Surveillance 
System (NNDSS) by local and health departments all 
over the country. In particular, 34,  945 confirmed and 
probable cases of Lyme disease were reported in 2019, 
which is about 4% more than in 2018 (cf. CDC 2021a 
and [36]). This surveillance system relies on health-
care workers to report cases, thus only cases who seek 
medical care and the ones that are being submitted will 
be reported. Also, Lyme disease cases are often under 
reported due to difficulties in the diagnostic, there-
fore the improvement of the CDC surveillance system 
is essential for timely diagnosis of Lyme disease. Vari-
ous studies using other methods of surveillance sug-
gest that these numbers are underestimating the actual 
number of Lyme disease cases in the US since the cur-
rent surveillance system fails to capture, classify accu-
rately and report in near real-time exactly the counts 
of Lyme disease cases [2, 6, 14, 37–46]. A recent study, 
using data from insurance coverage, has estimated that 
476, 000 people may get Lyme disease each year in the 
US [45]. However, another study has suggested an over 
diagnoses in some high endemicity areas [47].

According to Google Health Vice President David 
Feinberg: “an estimated 7% of Google’s daily searches 
are health-related” (The Telegraph, 2019). As the 
internet has become an essential source of health-
related information, it has been suggested that online 
web-based data seeking information about cases and 
behaviors can be used as a complementary measure 
of disease surveillance in the context of public health. 
Increased digital engagement in the public square of 
social media has coincided with the rise of a field of 
study known as “infoveillance,” which can be defined as 
an analysis of search engine queries to be used as a tool 
for public health surveillance and policy development 
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[48]. The problem with using web-based data is the 
complexity of the data collection, which normally goes 
through keyword extraction. Many studies have pro-
posed various approaches, but most of them rely on 
three steps: selecting and filtering information, data 
processing, geocoding of information if necessary, and 
applying statistical methods to detect trends and pre-
dict outcomes [49].

The surveillance of epidemics or infectious disease 
outbreaks using web-based search data (also known as 
digital surveillance) has been a recurring topic in the lit-
erature in recent years [50]. Several researchers have been 
interested in monitoring vector-borne diseases using 
web-based and social media data [51]. Online Google 
search traffic data helps in the analysis of data related to 
health topics and the prediction of disease occurrence 
and outbreaks by providing valuable insights into disease 
patterns and population behavior [52]. It has been sug-
gested that data generated by web searches can enhance 
surveillance systems by providing real-time proxy data, 
thus enabling faster responses. The surveillance of influ-
enza outbreaks was a well-known example of the use 
of web-based data in health [53]. Various researchers 
have presented methods to optimize such data for vari-
ous infectious diseases to help public health agencies 
and improve the existing surveillance systems. The most 
famous example is Google flu, which is a Google trend 
for flu-related web searches.

Another way to use internet data as a surveillance tool 
is through social media platforms like Twitter or Red-
dit. As of January 2022, the social microblogging net-
work Twitter has 76.9 million users (approximately twice 
the population of California), making the United States 
the first country with most users, where 38.4% of users 
being female. Also, 47% of US’s internet users aged 15 
to 25 used Twitter, compared to only 26% of those aged 
56 or higher [54]. With an estimated 500 million tweets 
registered daily in real time, one advantage of Twitter is 
that tweets are mostly public, where they can easily be 
geotagged to a specific location [51]. Among these mil-
lions of tweets available daily, only a reduced propor-
tion can be collected free of charge through Twitter 
APIs (Application Programming Interfaces). However, 
continuous polling through Twitter APIs can give access 
to a large dataset allowing detailed analysis [51, 55, 56]. 
Researchers have since developed various methodologies 
for collecting and filtering tweets to accurately identify 
health-related tweets and demonstrate their correlation 
with national reports of infectious diseases [57].

In accordance with a systematic review of the litera-
ture, few studies use internet searches or social media 
data to assess the distribution of Lyme disease [58]. 
Google Trends, Twitter, YouTube and discussions from 

various forums offer an exciting tool for monitoring pub-
lic attention to specific infectious diseases such as Lyme 
disease [59–69]. As described previously, Google engine 
searches with terms associated with Lyme disease show 
similar patterns in temporal and spatial variations con-
sistent with the trend observed in epidemiological data 
[63, 66]. Data from social networks such as Twitter also 
play a role in extending traditional epidemiological mod-
els and search by sharing spatial and temporal patterns 
similitudes [68]. However, most studies using web-based 
data and social media datasets used a limited set of key-
words, which has been inconsistent throughout the lit-
erature [59–62, 64–66, 68, 69].

Based on the literature there are numerous keywords 
that researchers associated with Lyme disease [59–65, 
68, 69]. To name a few, they used keywords like Tick, 
mice, Lyme, Lyme disease, borreliosis, tick bite, cough, 
borreliosis symptoms, tick sting, circular rash, borrelia 
burgdorferi sensu lato, bull eye’s pattern rash, and borre-
liosis. However, this limited diversity of keywords chosen 
could explain the disparity in the results of studies that 
attempted to test or prove the performance of models 
developed from online data activities. As a result, there is 
a need to emphasize a better method for extracting key-
words associated with Lyme disease from these sources. 
In the US, however, researchers have tried to combine 
web-based data with the traditional surveillance system 
to improve the prediction [61, 64, 66]. Among the few 
studies that have used web-based data from social media 
and Google trends, the majority of them have used a 
machine-learned classifier to search for potential and 
most representative keywords related to the research 
topic from data collected using a Natural Language Pro-
cess (NLP).

Surprisingly, no study has used Twitter data as a sur-
veillance tool for Lyme disease in the US. Our study aims 
to explore the usefulness of Twitter data as a potential 
surveillance tool for Lyme disease in the US. The main 
contribution of this paper is as follows:

•	 Provide a large, curated dataset of over 77,  500 
labelled Lyme disease tweets in the US between 2010 
and 2019. With a great need to consolidate new data 
sources relevant to the Lyme disease epidemic, this 
dataset is publicly available for academics to use in a 
range of epidemiological research studies;

•	 Study the empirical performance of a set of state-of-
the art NLP-based classifiers for predicting tweets 
about Lyme disease. In particular, BERTweet can be 
a reliable and accurate model for identifying potential 
Lyme disease cases using self-reported tweets;

•	 Analyze twitter data for describing Lyme disease 
incidence rates in the US using a large set of accurate 
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Lyme-related keywords. Specifically, explore the spa-
tio-temporal patterns between the tweet counts and 
disease incidence rates from the CDC.

Methods
To lay the groundwork for this study, the problem of 
identifying tweets relevant to Lyme disease is defined as 
a binary classification task. Given a sample of n tweets 
D = {(xi, yi)}

n
i=1 , with xi ∈ R

d is the numerical (or feature 
vector) representation of the i-th tweet and yi ∈ {0, 1} 
is its class label, where 0 and 1 denote the two classes 
involving irrelevant and relevant Lyme disease tweets, 
respectively. We aim to use D to train, validate, and 
test an NLP-based classification model so that, given 
new unknown tweet xj , the learned model can identify 
whether xj is a Lyme disease tweet or not, i.e., predict xj ’s 
corresponding class label.

Data collection and preprocessing
Twitter data was collected using the twitter applica-
tion program interface (API) with an academic research 
account to create the training and testing data sets for 
the binary classification of tweets about Lyme disease. By 
querying with “ #lymedisease ”, “ #lyme ”, and “lyme” key-
words from the years 2010 to 2019, removing re-tweets, 
and restricting the language to English only, approxi-
mately 1.3 million tweets were collected, with 725,  000 
tweets of which originated in the US. GeoPy, a python 
library, was then used to refine the county and state 
geolocations of the 725,000 tweets. GeoPy approximates 
the tweet’s geolocation using the user profile’s location 
information through third-party geocoders and other 
data sources. In addition to handling precise locations, 
GeoPy also utilizes fuzzy matching to infer the mean-
ing of misspelled or abbreviated words such as BKLYN 

(Brooklyn, NY). This results in obtaining 419, 000 tweets 
with identifiable geolocations.

A set of keywords frequently associated with Lyme 
disease was first developed, which was then treated as a 
set of regular expressions (regex) and applied to label the 
tweets as either relevant or irrelevant to Lyme disease for 
the training dataset. Four annotators labeled the data, and 
then they cross-checked a sample of each other’s work. 
They first started with 100 tweets each and reviewed 
all the tweets together, and agreed on how to label the 
rest of the tweets. Tweets relevant to Lyme disease are 
labelled with a ‘1’ while the irrelevant ones are labelled 
with a ‘0’. As shown in Table  1, the regular expression 
keywords were chosen in certain cases by inspecting the 
content and analyzing the word frequency in all the col-
lected tweets. In other cases, the keywords were selected 
based on known medical symptoms or modes of acquir-
ing Lyme disease. For example, the following (slightly 
modified) tweets were labelled as Lyme disease-related: 
“My aunt is really sick, we think it‘s Lyme”, “Scientists dis-
covered new Lyme treatment”, “I had Lyme 5 years ago”, 
“He has high fever and tick bite”, and “Please join us for 
raising Lyme awareness”. Lastly, the accuracy of labelling 
tweets using regex in an automated manner with Python 
will not generate 100% accurately labelled tweets. There-
fore, the test/validation dataset was manually labelled by 
the authors using Table 1’s regular expressions as well as 
reading the context of the tweet to ensure the test/valida-
tion dataset is labelled accurately.

Train Dataset Preparation: Since the primary goal is 
to build NLP models that can capture the context and 
content of tweets about Lyme disease rather than geolo-
cations, portions of the 306, 000 tweets without geoloca-
tion were considered for the training process. Specifically, 
tweets were randomly selected from 2010 to 2019 years to 
train NLP classification models to recognize differences 

Table 1  The set of Keywords used to identify and label tweets relevant to Lyme disease

Keyword Category Keywords

Mode of Acquiring Lyme Disease ‘hiking’, ‘hike’, ‘forest’, ‘tick’, ‘ticks’, ‘bite’, ‘deer’, ‘deertick’, ‘tickborne’

Symptoms and Medical/Scientific Terms ‘borreliosis’, ‘zoonotic’, ‘infection’, ‘erythema’, ‘migrans’, ‘carditis’, ‘neuroborreliosis’, ‘bor-
relia’, ‘bacterium’, ‘ixodes’, ‘blackleg’, ‘blacklegged’, ’burgdorferi’, ‘borrelial’, ‘lymphocytoma’, 
‘arthritis’, ‘fever’, ‘headache’, ‘headaches’, ‘paralysis’, ‘hearing’, ‘rash’, ‘fatigue’, ‘swollen’, ‘lymph’, 
‘chill’, ‘chills’, ‘flu’, ‘sweat’, ‘inflammatory’, ‘inflammation’, ‘neck’, ‘knee’, ‘knees’, ‘stiffness’, ‘heart’, 
‘palpitations’, ‘numbness’, ‘tingling’, ‘nausea’, ‘vomiting’, ‘neurologic’, ‘vertigo’, ‘dizziness’, ‘sleep-
less’, ‘fogginess’, ‘nerve’, ‘irritability’, ‘joint’, ‘depression’, ‘memory’, ‘malaise’, ‘neuro’, ‘long-haul’, 
‘long haul’, ‘neurologist’, ‘dermatologist’, ‘late stage’, ‘early stage’, ‘antibiotic’, ‘specialist’, ‘lyme 
disease’, ‘lymedisease’, ‘physician’, ‘doctor’, ‘symptom’, ‘ache’, ‘pain’, ‘diagnose’, ‘diagnosis’, 
‘patient’, ‘hospital’, ‘clinic’, ‘cure’, ‘treat’, ‘heal’, ‘disease’, ‘medication’, ‘medicine’, ‘therapy’, ‘infec-
tion’, ‘lyme\’s’, ‘tested positive’, ‘tested negative’, ‘lyme test’, ‘lyme\’s test’, ‘medical care’, ‘med 
check’, ‘medical checkup’, ‘meds’, ‘health’, ‘illness’, ‘bulls eye’, ‘bulls-eye’, ‘bullseye’, ‘bull\’s eye’, 
‘bull\’s-eye’, ‘death’, ‘die’, ‘red color’

Common Vernacular/Colloquial Phrases ‘have lyme’, ‘had lyme’, ‘having lyme’, ‘has lyme’, ‘get lyme’, ‘gets lyme’, ‘got lyme’, ‘getting lyme’
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in communication style that can occur over time. Exactly, 
35, 000 geolocated tweets. were selected from each year 
at random and labelled as relevant to Lyme disease using 
the keywords stated in Table  1. Furthermore, 25,  000 
tweets (i.e., 2,500 from each year for a total of ten years) 
were randomly selected and labelled as irrelevant to 
Lyme disease based on the same set of keywords. For 
example, the tweet topic could be related to the city Lyme 
rather than Lyme disease. Finally, 10, 000 neutral tweets 
were included as irrelevant to Lyme disease. The neutral 
tweets are those that do not contain the word ”Lyme” and 
are about unrelated topics to Lyme disease. From a tech-
nical standpoint, neutral tweets are essential to improve 
the performance of NLP classification models in identify-
ing random tweets. As a result, the training dataset con-
tained 70,000 tweets in total: 35,000 tweets about Lyme 
disease and 35,000 tweets (i.e., 25,000 + 10,000) that are 
not about Lyme disease.

Test/Validation Dataset Preparation: To create the 
test and validation datasets (ground truth), 6, 000 geolo-
cated tweets were randomly selected from the 419,000 
tweets, and then manually labelled based on each 
tweet’s content. Of the 6,000 tweets, 3,800 and 2,200 
were labelled as relevant and irrelevant to Lyme disease 
respectively. Finally, an additional 1,500 neutral tweets 
were labelled as irrelevant to Lyme disease. In total, 
7,500 tweets were collected for the purpose of validating 
and testing the NLP models. In particular, 3,500 tweets 
were used in the validation step and the remaining 4,000 
tweets served as testing data.

Since there is a considerable need to combine new data 
sources related to the Lyme disease outbreak, we offer 
the training and testing datasets openly available to aca-
demics for use in a variety of epidemiological research 
investigations.

Identifying Lyme disease‑related tweets
Several NLP-based classification models were built 
and evaluated for classifying the tweets as Lyme dis-
ease related. Since all of these classifiers are frequently 
trained to understand contextualized representations and 
semantics of tweets, the training and the testing datasets 
must be further processed into a sequence of lemma-
tized tokens, each of which is represented as a numeri-
cal feature vector (namely word embedding). Specifically, 
stop words and special characters (i.e., hashtags) were 
first removed. Then, a set of word embedding methods 
was used to tokenize and lemmatize the tweets, which 
were then fed into the classification models. The follow-
ing embedding-classification model combinations were 
evaluated:

Word2vec [70] and XGBoost [71]. Word embed-
ding is a common method for representing words in a 

high-dimensional space based on their similarity. Gen-
sim [72] was used to train a model to extract the word 
embedding of a given corpus (i.e., collection of docu-
ments). Gensim also has built-in embeddings trained on 
large corpora that can be fit into the given corpus. In par-
ticular, the obtained Gensim Word2vec vector represen-
tations of all the documents in the corpus were fed into 
XGBoost for classification.

TF-IDF [73] and Logistic Regression [74]. TF-IDF, 
which stands for Term Frequency-Inverse Document 
Frequency, was used to obtain tweet embeddings. TF-
IDF is one of the more reliable vectorization methods. 
Its covariate matrix consists of the weight (i.e., TF-IDF 
score) of each word, which is upgraded by how frequently 
the word appears in each tweet but downgraded by 
how often it appears in the entire corpus. Therefore, the 
weight of each word in the matrix is balanced so that the 
importance of a given word is appropriately emphasized 
when training the logistic regression model for classifica-
tion purpose. For this study, the TF-IDF embeddings of 
the tweets were fed into the logistic regression model for 
classification.

BERT [75]. BERT, which stands for a Bidirectional 
Encoder Representations from Transformers, is a trans-
former-based language model that has been pre-trained 
on Wikipedia and the Brown Corpus. BERT model learns 
language embeddings through two tasks: mask language 
modelling and next sentence prediction. A BERT model 
was further trained and fine-tuned to classify Lyme dis-
ease-related tweets based on the context of the tweets. 
The cleaned tweets were then vectorized using BERT 
tokenizer, which uses the WordPiece tokenization tech-
nique. For example, the word “spreading” is tokenized 
into “spread” and “ ##ing ” such that similar contextual 
embeddings can be drawn from different samples with 
different word formats.

BERTweet [76] is a large-scale pre-trained model for 
English Tweets. It was released in 2020 and had similar 
architecture as BERT base. It is trained using the RoB-
ERTa pre-training procedure on an 80 GB corpus of 850 
million tweets. The model has been proven to be effective 
in named-entity recognition, part-of-speech tagging, and 
text classification.

For the purpose of training, validating, and testing the 
models, the tweets were cleaned by removing Hashtags, 
URL links, and username. This reduces the noise withing 
the tweets themselves. Profane words were removed in 
the tweets before building the tokens. We used the NLP 
library called ’ProfanityFilter’ to censor the content. Also, 
emojis were removed from the tweets to improve the 
tokenization process.

To guarantee a fair comparison, the same train and 
test datasets were used to build all the NLP classification 
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models. For the XGBoost classifier model, hyper-param-
eters of a learning rate of 0.01 and a number of estima-
tors of 100 were used. The logistic regression model was 
trained with and without 7−fold cross-validation after 
TF-IDF vectorization. In addition, various hyper-param-
eters such as L1/L2 regularization, inverse of regulariza-
tion strength values ranging from 0.1 to 100, and solvers 
such as ‘liblinear’, ‘lbfgs’, ‘sag’, and ‘saga’ were evaluated.

To configure the BERT and BERTweet models, Adam 
algorithm was chosen as the optimizer for its good per-
formance in handling sparse data like short tweets 
and low sensitivity to learning rate. Adam algorithm 
was needed to handle potential issues of sparse vector-
ized texts due to the length limitation on the nature of 
tweets. In addition, binary Cross-Entropy was used as 
the loss function to maximize likelihood estimation 
while Sigmoid was used as the activation function to bet-
ter suit binary classification problems. A learning rate 
of −2× 10−5 , a weight decay of 0.01, and a batch size of 
64 were used. The training procedure took about 1 hour 
with ‘accuracy’ as the best metric for an early stopping 
value of 0.001. The models ran for 2 epochs to avoid over-
fitting the training dataset. Note that the hyperparameter 
value ranges used as suggested in [75]. It is recommended 
to use only 2 to 4 epochs and a batch size of 64. This 
statement was confirmed by our finding; See Supplemen-
tary Table  1 (Additional File 1), for BERTweet. In fact, 
The validation loss starts to increase after 2 epochs which 
demonstrates the presence of overfitting. This is because 
training BERT’s like pre-trained models with a large 
number of epochs frequently results in catastrophic for-
getting, where the model forgets the pre-trained weights.

Consequently, the results of the underlying NLP classi-
fiers used to identify Lyme disease tweets were compared 
to the keyword-based labelling method (explained in 
Subsection  “Data collection and preprocessing”), which 
can serve as a good baseline for comparison. Further-
more, the following standard metrics were calculated 
to assess the accuracy and efficiency of results obtained 
from all the classifiers on the testing dataset: classifica-
tion accuracy, F1-score, precision, and recall.

Descriptive spatio‑temporal pattern analysis
We studied the spatio-temporal correlation between 
tweet counts resulting from the best classification algo-
rithm and CDC disease incidence rates. This is cru-
cial because, if a correlation exists, tweet counts could 
be used to predict Lyme disease incidence rates. This is 
because if an outbreak occurs in a specific community, 
then there will be an increase in tweets about Lyme dis-
ease due to increased awareness, which implies that any 
tweets about Lyme disease can be used to identify Lyme 
disease cases in real time.

Results and discussion
Performance of the NLP classification models
As shown in Table 2, BERTweet outperformed all tested 
classification models, achieving the highest classification 
accuracy, F1, precision, and recall scores. BERT showed 
a decent ability to classify Lyme disease-related tweets, 
coming slightly behind BERTweet with an F1- score of 
89% and a classification accuracy of 90% . The TF-IDF 
logistic regression model was marginally more accurate 
than the basic keyword labelling method because there 
were slightly more false positives (i.e., lower precision 
score of 94% ) but fewer false negatives (i.e., higher recall 
score of 81% ), resulting in a very similar F1 score of 87% 
compared to 86% for keyword labelling. In addition, the 
total number of correctly predicted true positives and 
true negatives across the entire dataset was compara-
ble to the keyword labelling method. On the contrary, 
the Word2vec-XGBoost classification model was con-
siderably less accurate than the basic keyword labelling 
method, producing more false positives (i.e., a lower pre-
cision score of 78% ) and false negatives (i.e., a very low 
recall score of 73% ), resulting in a lower F1 score. Fur-
thermore, the total number of correctly predicted true 
positives and true negatives was less than the keyword 
labelling method, resulting in lower accuracy score of 
76%.

One of the reasons for the poor performance of the 
Word2vec-XGBoost is that it is commonly difficult to 
properly tune the hyperparameters of XGBoost, which 
frequently results in XGBoost overfitting. Furthermore, 
due to the large size of the vocabulary, Gensim Word2vec 
may be difficult to train and require a longer training 
time to extract the features, particularly when using tra-
ditional functions such as the softmax. While approxima-
tion algorithms such as negative sampling or hierarchical 
softmax may be applied to alleviate this issue in Word-
2vec, the produced word vectors are not distributed uni-
formly in the vector space, leading to insufficient vector 
space utilization. Moreover, Word2vec is a static word-
based model that extracts content from a corpus and 
generates context-independent co- embeddings based on 

Table 2  Performance comparison of NLP classification models 
on the test dataset. The highest score values are shown in bold

NLP Classification Model Accuracy F1 Score Precision Recall

Keyword-based labelling 0.84 0.86 0.97 0.77

Word2vec and XGBoost 0.76 0.75 0.78 0.73

TF-IDF and Logistic Regres-
sion

0.88 0.87 0.94 0.81

BERT 0.90 0.89 0.96 0.83

BERTweet 0.90 0.90 0.95 0.85
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occurrence information. It frequently cannot be dynami-
cally optimized and cannot take word position and order-
ing into account.
TF-IDF , like Word2vec, does not consider context and 

does not capture the position of the words. It is computa-
tionally less intensive than Word2vec, but, unlike Word-
2vec, TF-IDF does not take into account semantics and 
co-occurrence information across documents. Apart 
from tweet embeddings, we believe that the superior 
accuracy of TF-IDF logistic regression over Word2vec-
XGboost is due to the dominance of logistic regression 
over XGboost, which is consistent with the fact that 
logistic regression models typically have more accurate 
probability calibration in comparison to gradient boost-
ing approaches (see Niculescu-Mizil, et.al. 2005 for more 
details). This could also support the hypothesis that 
our datasets are likely to be linearly separable, because 
XGboost captures nonlinear relationships while logistic 
regression fits more linear ones. BERT and BERTweet, on 
the other hand, are context-dependent models that pro-
duce accurate word representations that consider word 
position and ordering. They can also understand different 
semantic meanings of words in different tweet contexts. 
This could explain why pre-trained models like Bert and 
BERTweet perform better in our results than Gensim 
word2vec-XGboost and TF-IDF logistic regression.

Spatio‑temporal pattern analysis
This experiment examines the spatio-temporal correla-
tion between tweet counts and CDC disease incidence 
rates. Since BERTweet produced the most accurate clas-
sification results in Subsection “Performance of the NLP 
classification models”, this model was chosen to classify 
the untouched 419,  000 tweets to correlate or predict 
Lyme disease cases. Afterwards, exploratory data analysis 
was conducted as follows.

CDC Lyme disease counts vs. classified tweet counts
The classified tweet counts were compared to Lyme dis-
ease counts between 2010 and 2019 to understand their 
effective sample sizes. We used the CDC’s Lyme Disease 
data counts. As shown in Fig. 1, tweet counts and Lyme 
disease counts followed relatively similar trends with a 
few exceptions. In particular, the Pearson correlation 
between the two counts was 0.82, while the Spearman 
correlation was 0.92, both with p-values less than 0.05. 
From 2010 to 2012 when Twitter membership and usage 
were still low, tweet counts were lower and did not corre-
late to the Lyme disease counts as expected. In contrast, 
the observed spike in tweet counts between 2015 and 
2016 was possibly attributable to the increased popular-
ity of Twitter and general awareness of the disease. Fur-
thermore, Lyme disease cases have a seasonal trend that 
peaked during the summer months of June and July, as 
shown in Fig. 2.

Tweet counts were also examined to see if similar pat-
terns could be discerned. Figure  3 shows that tweets 
related to Lyme Disease increased in May, June, and July. 
In addition, the month of May had the highest peak in 
tweet counts, which was one month prior to the peak in 
Lyme disease discussions. This can be explained by three 
major factors: (1) it can take up to one month for Lyme 
disease symptoms to appear; (2) Lyme disease can be 
difficult and time-consuming to diagnose; (3) organiza-
tions or Twitter users send out Lyme disease warnings 
in advance. Thus, if historical monthly case counts were 
available to build the correlation, Twitter could poten-
tially provide information on how Lyme disease spreads 
over the course of a year.

Tweet rate and Lyme incidence rate on US map
To comprehend the patterns of how tweets and Lyme 
disease cases spread over different regions of the US, 

Fig. 1  Tweet count and Lyme disease count comparison in the US from 2010 to 2019
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a comparison plot of tweet rates (number of cases per 
100,000 people) versus Lyme disease incidence rates 
(number of cases per 100,000 people) for each year was 
generated. Figure 4 captures the plots for three selected 
years (2013, 2016, and 2019). For simplicity, only figures 
for the three most representative years are shown. The 
preliminary remark is that the distributions of Lyme dis-
ease data across years were quite similar. The Northeast, 
Upper Midwest, and Northwest were the regions with 
the highest incidence rates. The second observation is 
that there was a consistent pattern indicating that West 

and Northeast regions had a higher tweet rate across 
the years, despite a small increase in total tweets in later 
years.

Nevertheless, the graphs also revealed that the distri-
butions of Lyme disease incidence and tweet rates were 
not identical. For many counties, a high incidence rate 
was not necessarily associated with a high tweet rate or 
vice versa. For example, it is common for a county with 
an increased incidence rate to not have a high tweet rate, 
perhaps due to limited access to the Internet or limited 
interest in discussing Lyme disease. This indicates that 

Fig. 2  Histogram of confirmed Lyme disease cases in the US between 2010 and 2019

Fig. 3  Histogram of Lyme disease tweet counts by month in the US from 2010 to 2019
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not all counties in the United States have a similar dis-
tribution between the two rates, which requires further 
investigation to understand these discordances.

Conclusion and future work
This study has focused on the understudied problem of 
using Twitter data as a surveillance tool for Lyme disease 
in the US. As such, the novelty of this work lies in analyz-
ing web-based Twitter data for describing Lyme disease 
incidence rates in the US based on an accurate selection 
of keywords. To the best of our knowledge, this is the first 

study to use Twitter data to predict Lyme disease inci-
dence in the US without integrating it with current sur-
veillance systems. Although this study focused on mining 
Twitter and analyzing data from the US given it is one 
of the world’s hotspots for Lyme disease, our methodol-
ogy can be easily generalized to other regions around the 
world.

We successfully collected approximately 1.3 million 
tweets, which were then preprocessed to extract the 
most relevant tweets about Lyme disease, many of which 
included geolocations. Using a set of keywords filter, 

Fig. 4  Comparison of selected Geo Maps for Lyme disease tweets and cases in the US (2013, 2016, and 2019). This figure was plotted using Plotly 
library in Python
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these tweets were manually labeled as relevant or irrel-
evant to Lyme disease. Afterwards, a variety of NLP clas-
sification models such as logistic regression, XGBoost, 
BERTweet, and BERT were trained and tested to clas-
sify Lyme disease tweets. Subsequently, spatiotemporal 
correlations were evaluated between the classified tweet 
counts obtained from BERTweet and the CDC disease 
incidence rates in the US.

Furthermore, the study has revealed a few key findings. 
First, there is a very strong correlation between classified 
tweet counts and Lyme disease counts, with both follow-
ing relatively similar trends with some exceptions. Sec-
ond, in 2015 and early 2016, the social media platform 
Twitter played a critical role in raising general aware-
ness of Lyme disease. Third, there was a consistent pat-
tern indicating that the West and Northeast regions had 
a higher tweet rate over time. However, a high number of 
tweets does not necessarily mean a high number of Lyme 
cases. We have noticed that in many counties, there are a 
high number of cases reported on Twitter without observ-
ing the same trend from CDC data. This will be explored 
further in future research. Finally, BERTweet outper-
formed all tested NLP-based classifiers. Overall, these 
preliminary results in Experiment I support its accuracy, 
as BERTweet achieved the highest classification accuracy 
and F1-score of 90% . Moreover, it is worth noting that the 
study’s primary goal was to demonstrate that leveraging 
a larger dataset that has been meticulously curated can 
indeed yield impressive results. While we think the choice 
between dataset size and manual labelling effort should be 
dependent on available resources and the specific goals of 
the application, apparently a much smaller but manually 
labelled dataset could be a potential efficient solution to 
handle scenarios where manual labelling is infeasible or 
there is a limited amount of data.

One limitation of this study is that many of the tweets 
collected may not be confirmed Lyme disease cases. Our 
team is working currently to refine the classification of the 
tweets by identifying and labeling tweets that are truly con-
firmed and potential Lyme disease cases to obtain more 
accurate correlations across all US counties and build an 
early warning system for Lyme disease in the US. Another 
limitation to address in our future studies is to avoid neu-
tral tweets or combine them with non-lyme disease tweets.
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